
Vision AI for Science and Engineering Applications

Mohamed Wahib
RIKEN Center for Computational Science, Japan

16th June 2025

Not all AI is GenAI; not all GenAI is LLMs

2

Work of Many Collaborators
Artur Podobas

Emmanuel Jeannot

Jesus Labarta, Marc Clasca, Mario Acosta, Kai Keller

Didem Unat, Ilyas Turimbetov

François Trahay

A. Dubey, I. Cloet, X. Wu, J. O’Neal, Klaus

Saathvik Selvan, Connor Chen

Johann Rudi, Wuchun Feng

Xiao Wang, Issac Lyngaas

Katherine Keegan

Balazs Gerofi

Ameilie Zhou, Yuxin Wang

Xue Yu

Luo Tao

Satoshi Matsuoka
Kento Sato

Jens Domke
Jun Igarashi

Aleksandr Drozd
Emil Vatai

Lingqi Zhang
Peng Chen
Sara Moukir

Toshio Endo
Rio Yokota

Riichiro Hira
Takayuki Nishiyo

Chen Zhuang
Du Wu

Tengfei Wang
Ivan Ivanov

Liu Xin , Truong Thao Nguyen

Masaharu Munetomo, Enzhi Zhang

Kentaro Uesugi, Takaki Hatsui

Seo Akira, Yosuke Higo

RIKEN-CCS KTH

DDN

AIST

Hokkaido U.

BSC

Nvidia/Koç U.

Télécom SudParis

ANL

VirginiaTech

ORNL

Spring-8

Intel

Emory U.

UC Berkeley

HKBU

NUIST

!

!

!

!

"

"

"

"

"

!

#

"

"/$

%

&

'

A*STAR(Kyoto U.!

Science Tokyo

#

Why at all is AI Relevant to Science/Engineering

3
Science is reverse engineering nature à (mostly) by observing patterns

Astronomers observed regular,
predictable motion of celestial bodies

What governs this motion?

Newton worked backward from these observations and
proposed: A universal force acts between all masses

AI (Machine Learning) is Good at Finding Patterns

4
AI in Science: use AI pattern recognition capability to understand nature

When you use ChatGPT, you are asking the
model to predict from patterns it learned

5

Breakthroughs in AI-based Science: Finding Patterns

AlphaFold
is autoregressive: It can be “rolled out” by feed-
ing its own predictions back in as input, to
generate an arbitrarily long trajectory of weath-
er states (Fig. 1, B and C).
GraphCast is implemented as a neural net-

work architecture, basedonGNNs in an “encoder-
processor-decoder” configuration (13, 17), with a
total of 36.7 million parameters (code, weights,
and demos can be found at https://github.com/
deepmind/graphcast). Previous GNN-based
learned simulators (18–20) have been very
effective at learning the complex dynamics
of fluid and other systems modeled by par-
tial differential equations, which supports their
suitability for modeling weather dynamics.
The encoder (Fig. 1D) uses a single GNN layer

to map variables (normalized to zero-mean unit
variance) represented as node attributes on

the input grid to learned node attributes on
an internal “multimesh” representation. The
multimesh (Fig. 1G) is a graph that is spatially
homogeneous, with high spatial resolution
over the globe. It is defined by refining a reg-
ular icosahedron (12 nodes, 20 faces, 30 edges)
iteratively six times, where each refinement
divides each triangle into four smaller ones
(leading to four times more faces and edges),
and reprojecting the nodes onto the sphere.
Themultimesh contains the 40,962 nodes from
the highest-resolution mesh (which is roughly
1/25 the number of latitude-longitude grid
points at 0.25°) and the union of all the edges
created in the intermediate graphs, forming a
flat hierarchy of edges with varying lengths. The
processor (Fig. 1E) uses 16 unshared GNN layers
toperform learnedmessage-passingon themulti-

mesh, enabling efficient local and long-range
information propagation with few message-
passing steps. The decoder (Fig. 1F) maps the
final processor layer’s learned features from the
multimesh representation back to the latitude-
longitude grid. It uses a single GNN layer and
predicts the output as a residual update to the
most recent input state (with output normaliza-
tion to achieve unit variance on the target re-
sidual). See supplementary materials section 3
for further architectural details.
Duringmodel development, we used 39 years

(1979–2017) of historical data from ECMWF’s
ERA5 (21) reanalysis archive. As a training ob-
jective, we averaged the mean squared error
(MSE) between GraphCast’s predicted states
overN autoregressive steps and the correspond-
ing ERA5 states, with the error weighted by

Fig. 1. Model schematic.
(A) The input weather
state(s) are defined on a
0.25° latitude-longitude grid
comprising a total of 721 ×
1440 = 1,038,240 points.
Yellow layers in the close-up
pop-out window represent
the five surface variables,
and blue layers represent the
six atmospheric variables
that are repeated at 37
pressure levels (5 + 6 ×
37 = 227 variables per
point in total), resulting
in a state representation
of 235,680,480 values.
(B) GraphCast predicts the
next state of the weather
on the grid. (C) A forecast
is made by iteratively
applying GraphCast (GC)
to each previous predicted
state, to produce a
sequence of states that
represent the weather at
successive lead times.
(D) The encoder component
of the GraphCast archi-
tecture maps local regions
of the input (green boxes)
into nodes of the multimesh
graph representation (green,
upward arrows that termi-
nate in the green-blue node).
(E) The processor compo-
nent updates each multi-
mesh node using learned
message-passing (heavy blue
arrows that terminate at a
node). (F) The decoder component maps the processed multimesh features (purple nodes) back onto the grid representation (red, downward arrows that terminate
at a red box). (G) The multimesh is derived from icosahedral meshes of increasing resolution, from the base mesh (M0, 12 nodes) to the finest resolution (M6, 40,962 nodes),
which has uniform resolution across the globe. It contains the set of nodes from M6 and all the edges from M0 to M6. The learned message-passing over the
different meshes’ edges happens simultaneously, so that each node is updated by all of its incoming edges. [The Earth texture in the figure is used under CC BY 4.0
from https://www.solarsystemscope.com/textures/]

RESEARCH | RESEARCH ARTICLE

Lam et al., Science 382, 1416–1421 (2023) 22 December 2023 2 of 6

D
ow

nloaded from
 https://w

w
w

.science.org at R
ikagaku K

enkyusho Library of R
iken on June 13, 2024

GraphCast

708 | Nature | Vol 577 | 30 January 2020

Article

(see Methods). We parameterized protein structures by the backbone
torsion angles (φ, ψ) of all residues and build a differentiable model of
protein geometry x = G(φ, ψ) to compute the Cβ coordinates, xi for all
residues i and thus the inter-residue distances, dij = ||xi − xj||, for each
structure, and express Vdistance as a function of φ and ψ. For a protein with
L residues, this potential accumulates L2 terms from marginal distribu-
tion predictions. To correct for the overrepresentation of the prior, we
subtract a reference distribution30 from the distance potential in the log
domain. The reference distribution models the distance distributions
P(dij|length) independent of the protein sequence and is computed
by training a small version of the distance prediction neural network
on the same structures, without sequence or MSA input features.
A separate output head of the contact prediction network is trained to
predict discrete probability distributions of backbone torsion angles
P(φi,ψi|S, MSA(S)). After fitting a von Mises distribution, this is used to
add a smooth torsion modelling term, Vtorsion, to the potential. Finally,
to prevent steric clashes, we add the Vscore2_smooth score of Rosetta9 to the
potential, as this incorporates a van der Waals term. We used multipli-
cative weights for each of the three terms in the potential; however, no
combination of weights noticeably outperformed equal weighting.

As all of the terms in the combined potential Vtotal(φ, ψ) are
differentiable functions of (φ, ψ), it can be optimized with respect to
these variables by gradient descent. Here we use L-BFGS31. Structures
are initialized by sampling torsion values from P(φi, ψi|S, MSA(S)).
Figure 2c illustrates a single gradient descent trajectory that minimizes
the potential, showing how this greedy optimization process leads to
increasing accuracy and large-scale conformation changes. The sec-
ondary structure is partly set by the initialization from the predicted
torsion angle distributions. The overall accuracy (TM score) improves
quickly and after a few hundred steps of gradient descent the accuracy
of the structure has converged to a local optimum of the potential.

We repeated the optimization from sampled initializations,
leading to a pool of low-potential structures from which further struc-
ture initializations are sampled, with added backbone torsion noise
(‘noisy restarts’), leading to more structures to be added to the pool.
After only a few hundred cycles, the optimization converges and the
lowest potential structure is chosen as the best candidate structure.
Figure 2e shows the progress in the accuracy of the best-scoring struc-
tures over multiple restarts of the gradient descent process, show-
ing that after a few iterations the optimization has converged. Noisy
restarts enable structures with a slightly higher TM score to be found
than when continuing to sample from the predicted torsion distribu-
tions (average of 0.641 versus 0.636 on our test set, shown in Extended
Data Fig. 4).

Figure 4a shows that the distogram accuracy (measured using the
local distance difference test (lDDT12) of the distogram; see Meth-
ods) correlates well with the TM score of the final realized structures.
Figure 4b shows the effect of changing the construction of the potential.
Removing the distance potential entirely gives a TM score of 0.266.
Reducing the resolution of the distogram representation below six bins
by averaging adjacent bins causes the TM score to degrade. Removing
the torsion potential, reference correction or Vscore2_smooth degrades the
accuracy only slightly. A final ‘relaxation’ (side-chain packing inter-
leaved with gradient descent) with Rosetta9, using a combination of
the Talaris2014 potential and a spline fit of our reference-corrected
distance potential adds side-chain atom coordinates, and yields a small
average improvement of 0.007 TM score.

We show that a carefully designed deep-learning system can pro-
vide accurate predictions of inter-residue distances and can be used
to construct a protein-specific potential that represents the protein
structure. Furthermore, we show that this potential can be optimized
with gradient descent to achieve accurate structure predictions.

0 280
0.8

0 200 400 600

Gradient descent steps Prediction N–1

I \

R
es

id
ue

TM
 s

co
re

800 1,000 1,200

0 200 400 600 800 0 0.1 1 10Nat. 11,000 1,200

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

140
120
100
80
60
40
20
0

80

0.6

Noisy restarts

Iteration
100 101 102 103

TM
 s

co
re

0.5

0.4

0.3

0.2

0.1

0

70
60
50
40
30
20
10
0

600 1,200

r.m
.s

.d
. (

Å
)

Sequence
and MSA
features

Distance and torsion
distribution predictions

Gradient descent on
protein-specific potential

Deep neural
network

c

a

L
×

L
2D

 c
ov

ar
ia

tio
n

fe
at

ur
es

Ti
le

d
L
×

1
1D

 s
eq

ue
nc

e
an

d
pr

ofi
le

 fe
at

ur
es

b

220 residual convolution blocks

64

64

d

j

i

e

64 bins deep

500

TM score
r.m.s.d.

Fig. 2 | The folding process illustrated for CASP13 target T0986s2. CASP
target T0986s2, L = 155, PDB: 6N9V. a, Steps of structure prediction. b, The
neural network predicts the entire L × L distogram based on MSA features,
accumulating separate predictions for 64 × 64-residue regions. c, One iteration
of gradient descent (1,200 steps) is shown, with the TM score and root mean
square deviation (r.m.s.d.) plotted against step number with five snapshots of
the structure. The secondary structure (from SST33) is also shown (helix in blue,
strand in red) along with the native secondary structure (Nat.), the secondary

structure prediction probabilities of the network and the uncertainty in
torsion angle predictions (as κ−1 of the von Mises distributions fitted to the
predictions for φ and ψ). While each step of gradient descent greedily lowers
the potential, large global conformation changes are effected, resulting in a
well-packed chain. d, The final first submission overlaid on the native structure
(in grey). e, The average (across the test set, n = 377) TM score of the lowest-
potential structure against the number of repeats of gradient descent per
target (log scale).

6

AI for Spatial and Spatio-temporal Data

7

Complex Spatial-Temporal Data Is Common for
Science & Engineering

Fluid dynamics Satellite Remote SensingClimate/Weather Prediction

X-ray/electron microscopy Industrial inspection
Synchrotron beamline

8

Training Large-Scale Vision Transformer Foundation Models for
Science and Engineering Applications

Mohamed Wahib1, Peng Chen2, Jun Igarashi1, Isaac Lyngaas3, Xiao Wang3
1 RIKEN Center for Computational Science, Japan, {mohamed.attia@riken.jp, jun.igarashi@riken.jp}
2 National Institute of Advanced Industrial Science and Technology, Japan, {chin.hou@aist.go.jp}

3 Oak Ridge National Laboratory, USA, {lyngaasir@ornl.gov, wangx2@ornl.gov}

1 Motivation
Vision Transformer (ViT) is a powerful AI architecture for com-
puter vision that is used by most imaging foundation models due
to its e�ectiveness in discerning complex visual patterns across
many tasks. However, training large-scale ViT foundation models
requires considerable computing resources, leading to a signi�cant
energy footprint for training. For example, Open-AI’s SORA video
generator model was trained on more than 10,000 NVIDIA H100
GPUs and the training took more than a month on a supercomputer.
The energy consumption for training SORA was equivalent to the
total annual energy consumption of 300 US households. This project
aims to co-design the scaling algorithm and the ViT architecture
to achieve hardware-, modality-, and energy-conscious comput-
ing for ViT foundation models. We anticipate that our proposed
training approaches can not only signi�cantly improve energy e�-
ciency and reduce carbon footprint, but also signi�cantly improve
computing e�ciency and scalability, fostering an accelerated AI
development cycle on supercomputers at ORNL and RIKEN. Finally,
we target generic ViT design cycles that could cover the scope of
scienti�c/engineering images described in Table 1.

2 Challenges
To achieve optimal prediction performance, using self-attention
and feed-forward mechanisms alone is insu�cient. It is often nec-
essary to scale up the model size of the ViT and train it with high-
dimensional and high-resolution image data. However, training
large-scale ViTs for scienti�c computing is much more challenging
than text-based natural language processing (NLP) models due to
the following factors: (1) ViTs process high-dimensional image data
that requires signi�cantly more computational power and memory
compared to the one-dimensional text data handled by NLP [2]; (2)
ViTs need to capture complex spatial and temporal dependencies
within images or videos, which is more computationally intensive
than managing sequential dependencies in text [1]; (3) The higher
resolution image data necessitates greater need for computational
resources and e�cient scaling algorithm to map to the hardware
of DOE and RIKEN leadership supercomputing platform; (4) Most
parallelization techniques cater to the need for NLP models and are
not specialized for ViT architecture; and (5) The higher computa-
tions and memory requirement for ViT compared to NLP models
also lead to more energy consumption, necessitating greater need
for energy-saving training on ViT scienti�c imaging models.

3 Targets
The project’s goal is to co-design the scaling algorithm and the AI
architecture to achieve hardware-, modality-, and energy-conscious
computing for training vision transformer foundation models. We
will pursue the following three aims to achieve our overall goal.

Conference’17, July 2017, Washington, DC, USA
2024.

Table 1. Multi-dimensional Images in Science/Engineering
Type Resolution Tokens/Sample

Patch = 162/163
Dataset Sizes Dimensions

(Channels)
Weather\Climate
Simulations

100s3
10s channels
(ERA5 dataset)

~ 300K ~10 PB 3 Spatial +
1 Temporal +
(N Channels)

Satellite Images 1000s3
10s channels

~5M ~ 10s TB 2 Spatial +
1 Temporal +
(N Channels)

Microscopic
(Ex: Pathology)

100K2 ~100Ks
(4x4 patch)

~ 10s TBs 2 Spatial +
(1 or N Channels)

Video 100s2
~ Hours (24 f/s)
(YouTube-8m)

~1M ~1 PB 2 Spatial +
1 Temporal +
(N Channels)

X-Ray CT
(Ex: SP-`CT)

~8-12K3

>163 new beam
~1B ~100s TB 3 Spatial +

(1 Channel)

MRI
(Ex: dMRI)

~4K3

(sub 5-micron)
~ 30M ~ 10s TB 3 Spatial +

(N Channels)

- Develop hardware and energy conscious scaling algorithm: We
will develop hardware and energy conscious scaling algorithms,
capable of e�ciently aligning with the hierarchical structure of
supercomputer hardware, thereby achieving high computing and
scaling e�ciency. This proof of principle will be realized through
cache e�cient Flash Attention and Flash Feed-Forward, alongside
their seamless integration with the state-of-the-art model, sequence,
and data parallelisms. In addition, we will perform energy-oriented
hyperparameter search to achieve optimal compute and energy
e�ciency at the same time.

- Develop modality and energy conscious ViT architecture: We
will use model compression and a novel Deep Channel Hierarchical
Aggregation architecture to e�ciently process high-dimensional
imaging data through a deep network with a multi-channel aggre-
gation framework, achieving rapid data loading and computation
with low cost.

- Validate performance on three foundation models: To validate
the proposed algorithm and architecture, we will train three dif-
ferent ViT foundation models on the ORNL’s Frontier and RIKEN
AI4SCIENCE supercomputers, one each for pathology imaging, to-
mography imaging, and climate prediction. We will validate the
proposed solutions in terms of quanti�ed uncertainty, accuracy,
compute throughput, scalability, energy consumption, and memory
use using three downstream tasks, which are pathology cancer seg-
mentation, manufacturing quality inspection, and medium range
weather forecasting.

References
[1] Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. 2023.

Accurate medium-range global weather forecasting with 3D Neural Networks.
Nature 619, 7970 (Jul 2023), 533–538. h�ps://doi.org/10.1038/s41586-023-06185-3

[2] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr
Dollár, and Ross Girshick. 2023. Segment Anything. arXiv:2304.02643 [cs.CV]

1

Multi-dimensional Images in Science & Engineering

9

What is a Vision Transformer?

10

Self-attention TL;DR: Text and Embeddings

Bird

Horse

Human

Plane

Car

Train

• Modeling language:
• Find how words relate to and affect the meaning of other words

• Use a single number to represent each word, words
semantically close in meaning are close to each other on the
number line

Virus

Bacteria

10 50 100

Semantically close= “Living thing”

Text and Embeddings

Bird

Horse
Human

Plane

Car
Train

• But words can be close in one attribute, and not others

Virus
Bacteria10

50 100

Semantically in meaning = “Living thing”

50

100

Se
m

an
tic

al
ly

 C
lo

se
=

 “
C

an
 F

ly
”

(10, 100) (100, 100)

(10, 10)
(10, 10)

10

(50, 10)
(50, 10)

(100, 10)
(100, 10)

11

LLMs: a discovery about the regularity of the semantics of human communication,
rather than a discovery about the intelligence of neural networks

10

50 100

Close in meaning = “Living thing”

50

100

C
lo

se
 in

 m
ea

ni
ng

=
 “

C
an

 F
ly

”

Human

Bird

Virus

10

Plane

Train

Bacteria

Car

?

?

Training step 1

Training step 2

Training step 3

Training step 4

Horse

12

13

Transfomer: Generalizing to Any Seqeunce of Tokens
ØInput is a sequence of tokens
ØTokens can be anything (ex: words, flattened patches of images*)

*Dosovitskiy et al. in An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1

14

ViT and Inductive Bias

Ø Universal law of approximation

Ø Bound on approximation error
Ø Generalization error
Ø Optimizer error

Ø FC Networks not enough (in Practice)

Reference for the reason:
http://neuralnetworksandde
eplearning.com/chap4.html

Any continuous function f

M: RRf N ®

Can be realized by a fully
connected network with
hidden layer(s)

15

ViT and Inductive Bias
Ø Inductive bias:

Ø Assumptions a learning algorithm uses to predict on unseen data

Ø Neural Networks à sophisticated pattern recognition
Ø Add network elements to “work better” with the pattern in the data

Ø

Convolution Neural Network

Spatially-local
Pattern

Recurrent Neural Network

Temporal
Pattern

Transformers
(w/ self-attention)

Pairwise
Pattern

16

ViT and Inductive Bias

Ø From the Inductive bias POV
Ø ViT might not seem to make much sense

Ø Receptive field is entire image
Ø Every piece of the image attends to all other pieces of the image

Ø Positives
Ø Model learns EVERYTHING à can ingest massive datasets

Ø Negatives
Ø Model learns EVERYTHING à expensive; finds irrelevant patterns

Ø

17

ViT Issues vs. Text Transformer Issues

Ø Transformer consume sequence of tokens
Ø Fitting to the nature of text

Ø Text tokens: atomic semantically distinct, rich in information,
Ø Visual tokens: geometrically related and sparse in semantics

Ø Loss of spatial hierarchy information becomes more pronounced
Ø When working with high-resolution or high-dimension images

18

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

Two Main Principles on Solving Real-world Problems

19

Start from Scientific Inquiry; Work Back to Solution

AI is a toolbox; always pick the right tool

1

2

Vision Transformers Use in Real-world Problems

6

Vision Transformers used in production, Examples:
a) microscopic pathology, b) X-ray CT road samples, c) weather prediction

4,096 patches 424 patches

Original Image
512x512

Canny Edge
Image

K0

K1

Morton Curve

Traditional Patching Proposed Adaptive Patching

Z-order Curve
Quadtree

Down-sampling

Transformer-based Model: ViT, UNTER, ViTUNET, Swin … etc

~10x ↓ Patches: ~100x ↓ Compute and Memory

1 2 3

4 4,

5

6

1

2

3

Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥ 4)
while achieving the same dice score is from a real example of training 512⇥ 512 images from the PAIP [55] liver cancer

dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I. Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

first down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’t 278

require additional revision to of the model or attention design. 279

III. ADAPTIVE PATCHING FOR HIGH-RESOLUTION 280

SEGMENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ”image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ⇥Z where Z is the resolution of image x. 294

Then, the sequence of non-overlapping patches can be noted 295

as {xi}Ni=1 2 RN⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = (ZP)2. For an image x 298

4 / 12

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79%.

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.

Stone Mask Connected Component Analysis

Pixels in Component

Distribution

3D Stone DistributionOriginal Volume Slice Separating Large Stones

Stacking Slices

lo
g

(A
re

a
)

Fig. 12: Example of ROVAI’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G| = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset Model Patch Size GPU (hours) Epochs Dice (%)

780 unique volumes
w/ simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our Model 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM, convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38%).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98%). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79%.

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.

Stone Mask Connected Component Analysis

Pixels in Component

Distribution

3D Stone DistributionOriginal Volume Slice Separating Large Stones

Stacking Slices

lo
g

(A
re

a
)

Fig. 12: Example of ROVAI’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G| = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset Model Patch Size GPU (hours) Epochs Dice (%)

780 unique volumes
w/ simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our Model 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM, convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38%).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98%). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

11

23

2 3

21

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

22

LLMs for 3D Segmentation
ØUsing LLMs for Vision (ex: Vision Transformers)
ØBecause of self-attention, the receptive field is the entire image!
ØSplit image to patches (ex: 16x16)
ØFeed patches to LLMs

ØSegmentation
ØLarger patches à model learns global meaningful segmentation; produces poor boundaries
ØSmaller patches are qualitatively better
Ø4x4 patches for 4K3 3D image = 1,000,000,000 tokens/image

(a) Patch size 32⇥ 32 (b) Patch size 16⇥ 16 (c) Patch size 8⇥ 8 (d) Ground Truth

Figure 3: Impact of the model patch size on the segmentation maps.

models from [19] and [47] and observe a significant differ-
ence, namely a mIoU of 45.69% and 48.06% respectively.
In the following, all the Segmenter models will be initial-
ized with the improved ViT models from [47]. We use pub-
licly available models provided by the image classification
library timm [56] and Google research [20]. Both models
are pre-trained at an image resolution of 224 and fine-tuned
on ImageNet-1k at a resolution of 384, except for ViT-B/8
which has been fine-tuned at a resolution of 224. We keep
the patch size fixed and fine-tune the models for the se-
mantic segmentation task at higher resolution depending on
the dataset. As the patch size is fixed, increasing resolu-
tion results in longer token sequences. Following [19], we
bilinearly interpolate the pre-trained position embeddings
according to their original position in the image to match
the fine-tuning sequence length. The decoders, described
in Section 3.2 are initialized with random weights from a
truncated normal distribution [25].
Data augmentation. During training, we follow the stan-
dard pipeline from the semantic segmentation library MM-
Segmentation [13], which does mean substraction, random
resizing of the image to a ratio between 0.5 and 2.0 and ran-
dom left-right flipping. We randomly crop large images and
pad small images to a fixed size of 512⇥512 for ADE20K,
480⇥480 for Pascal-Context and 768⇥768 for Cityscapes.
On ADE20K, we train our largest model Seg-L-Mask/16
with a resolution of 640⇥640, matching the resolution used
by the Swin Transformer [35].
Optimization. To fine-tune the pre-trained models for the
semantic segmentation task, we use the standard pixel-wise
cross-entropy loss without weight rebalancing. We use
stochastic gradient descent (SGD) [42] as the optimizer
with a base learning rate �0 and set weight decay to 0. Fol-
lowing the seminal work of DeepLab [33] we adopt the
”poly” learning rate decay � = �0 (1 � Niter

Ntotal
)0.9 where

Niter and Ntotal represent the current iteration number and
the total iteration number. For ADE20K, we set the base
learning rate �0 to 10�3 and train for 160K iterations with
a batch size of 8. For Pascal Context, we set �0 to 10�3

and train for 80K iterations with a batch size of 16. For
Cityscapes, we set �0 to 10�2 and train for 80K itera-
tions with a batch size of 8. The schedule is similar to
DeepLabv3+ [10] with learning rates divided by a factor
10 except for Cityscapes where we use a factor of 1.

Stochastic Depth
0.0 0.1 0.2

D
ro

po
ut 0.0 45.01 45.37 45.10

0.1 42.02 42.30 41.14
0.2 36.49 36.63 35.67

Table 2: Mean IoU comparison of different regularization
schemes using Seg-S/16 on ADE20K validation set.

Method Backbone Patch size Im/sec ImNet acc. mIoU (SS)

Seg-Ti/16 ViT-Ti 16 396 78.6 39.03

Seg-S/32 ViT-S 32 1032 80.5 40.64
Seg-S/16 ViT-S 16 196 83.7 45.37

Seg-B†/16 DeiT-B 16 92 85.2 47.08

Seg-B/32 ViT-B 32 516 83.3 43.07
Seg-B/16 ViT-B 16 92 86.0 48.06
Seg-B/8 ViT-B 8 7 85.7 49.54

Seg-L/16 ViT-L 16 33 87.1 50.71

Table 3: Performance comparison of different Segmenter
models with varying backbones and input patch sizes on
ADE20K validation set.

Inference. To handle varying image sizes during inference,
we use a sliding-window with a resolution matching the
training size. For multi-scale inference, following standard
practice [10] we use rescaled versions of the image with
scaling factors of (0.5, 0.75, 1.0, 1.25, 1.5, 1.75) and left-
right flipping and average the results.

4.3. Ablation study

In this section, we ablate different variants of our ap-
proach on the ADE20K validation set. We investigate
model regularization, model size, patch size, model perfor-
mance, training dataset size, compare Segmenter to convo-
lutional approaches and evaluate different decoders. Unless
stated otherwise, we use the baseline linear decoder and re-
port results using single-scale inference.
Regularization. We first compare two forms of regulariza-
tion, dropout [46] and stochastic depth [30], and show that
stochastic depth consistently improves transformer train-
ing for segmentation. CNN models rely on batch nor-

5

Impact of Model Patch Size on the Segmentation Maps*
* Strudel et al. Segmenter: Transformer for Semantic Segmentation, ICCV’21 (https://arxiv.org/pdf/2105.05633.pdf)

https://arxiv.org/pdf/2105.05633.pdf

23

Longer Sequence: a Challenge

ØThe longer the sequence, the more the context that can be extracted
ØEx: feeding an LLM entire books, library of papers, RAG, or segmentation
ØGPT-4-turbo à 128,000 tokens – GPT4-32k à 32,768 tokens (1 Token = ¾ Word)

ØCompute and memory cost ∝ sequence2

24

Methods for Longer Sequence

ØAlternative Mechanism for Attention
ØHierarchal Training
ØAttention Approximation
ØCache Blocking
ØSequence Parallelism
ØReduce Amount of Tokens Ingested

Re
se

ar
ch

Pr
od

uc
tio

n

“Multi-agent architectures effectively scale token usage for tasks
that exceed the limits of single agents.”

25

Compatibility of Longer Sequence Approaches in Training

Alternative for
Attention

Hierarchal
Training

Attention
Approximatio

n

Cache
Blocking

Reduce
Tokens

Sequence
Parallelism

Alternative for
Attention

Hierarchal
Training

Attention
Approximatio

n

Cache
Blocking

Reduce
Tokens

Sequence
Parallelism

?? ?
?

?

?

?
?

26

Methods for Longer Sequence

ØAlternative Mechanism for Attention
Monarch: use convolution to compute Attention

(FFT for convolution)

RetNet: a retention mechanism for attention modeling
(parallel recurrency)

RWKV: Transformer in training;
RNN in inference

(Linear attention)

Positional Interpolation: downscale vs. extrapolating
(Extend window size)

Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

27

ØHierarchal Training
ØTrain multiple transformers at different levels of abstraction
ØThe transformer at the lowest abstraction level trains on the shortest sequence segments.
ØThe transformer at the next higher level uses the previous level outputs as additional input to

train on longer segments.

CrossViT Hierarchal ViT Three-level Transformer MEGABYTE

Methods for Longer Sequence
Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

28

ØAttention Approximation
ØApproximate self-attention operation through sparse sampling, lox-rank approx., infrequent update …
ØNote: “sparse” when talking about LLMs now mean sparse sequence, not sparse model

Longformer Sparse
Transformer

Reformer
(Hash attention)

Big BirdRouting
Transformer

Local attention Global attention

Performers

Linear Transformers

In-frequent Update

LazyFormer

Methods for Longer Sequence
Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

29

ØCache Blocking
ØNo approximation
ØCan support longer sequences by blocking the attention matrix in scratchpad memory
ØAggregate amount of work stays the same à support longer sequence, but not faster

FlashAttention FlashAttention2

Methods for Longer Sequence
Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

30

Methods for Longer Sequence
Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

Nvidia Sequence Parallelism

*Not really sequence parallelism; parallelizes Dropout and LayerNorm

Long Sequence

*No significant speedup

• Sequence/context Parallelism
• Distributing long sequences among GPUs as short contiguous segments
• Communication overhead due to token inter-dependence MS DeepSpeed-Ulysses

*Not really sequence parallelism; full attention is still at each worker

DeepSpeed-Ulysses

Method
Comm Activation Parameter Attention Ease

complexity memory efficiency memory efficiency agnostic of use

ColAI-SP [Li et al., 2022b] O(M) X x x x
Megatron-SP [Korthikanti et al., 2022] O(M) X x X x

DS-Ulysses O(M/P) X X X X
Table 1: Comparison of our work (DS-Ulysses) to other sequence parallelism methods.

While recent works in sequence parallelism address the memory overhead, they are lacking in communication efficiency,
thus limited in scaling capability. Similar to our work, all existing works in sequence parallelism partition the input data
along sequence dimension but differ in what input projections are partitioned and how partitions are aggregated and
communicated for attention computation.

The authors in [Li et al., 2022b] (henceforward called ColAI-SP) introduce ring self attention, a ring-like communication
collective in which query projections are local whereas key and values projections are transmitted in a ring-style to
compute global attention, resulting in communication complexity linear in message size, M . Megatron-LM sequence
parallelism [Korthikanti et al., 2022] approach is tightly integrated with Megatron tensor parallelism. Megatron LM
partitions sequence along sequence dimensions and applies allgather and reduce scatter collective to aggregate QKV
projections for attention computation. Communication complexity analysis shows that unlike our approach, Megatron-
LM sequence parallelism communication volume increase linearly with message size (M) regardless of number of
compute devices. DeepSpeed-Ulysses on the other hand keeps communication volume consistent by increasing GPUs
proportional to message size or sequence length see 3.2 for more details.

Table 1 summarizes how DeepSpeed-Ulysses differs from other existing methods. DeepSpeed-Ulysses has communica-
tion efficiency advantage over the other two methods. It also benefits from leveraging ZeRO [Rajbhandari et al., 2020,
2021] optimization for model parameter partitioning across both sequence and data parallel groups. DeepSpeed-Ulysses
supports different kinds of attention and it is easy to use. Megatron-LM sequence parallelism is tightly integrated with
Megatron-LM tensor parallelism limiting both its memory efficiency and easy of use. ColAI-SP requires a different
(specific) kind of attention and is not easy to use. It is not clear how well ColAI-SP ring self-attention generalizes to
other attention types and mechanisms.

There are related works in sparse Transformer particularly focusing on full-attention approximation such as sparse
attention [Child et al., 2019, Choromanski et al., 2020, Zaheer et al., 2021, Beltagy et al., 2020]. There are also recent
works on single GPU memory and compute efficient attention. A popular example in this category is Flash attention
[Dao et al., 2022, Dao, 2023], which leverages known techniques such as tiling and recomputation for compute and
memory efficiency. These works are orthogonal to our work and were leveraged accordingly.

3 DeepSpeed-Ulysses Core Design

3.1 System Design

Figure 2: DeepSpeed sequence parallelism (DeepSpeed-Ulysses) design

Figure 2 shows the core design of DeepSpeed-Ulysses. As with the known transformer architecture, the design consists
of input sequences N partitioned across P available devices. Each local N/P partition is projected into queries (Q), keys

4

Figure 2: Top (a): We use the same model architecture as the original Transformer but reorganize
the compute. In the diagram, we explain this by showing that in a ring of hosts, each host holds one
query block, and key-value blocks traverse through a ring of hosts for attention and feedforward
computations in a block-by-block fashion. As we compute attention, each host sends key-value blocks
to the next host while receives key-value blocks from the preceding host. The communication is
overlapped with the computation of blockwise attention and feedforward. Bottom (b): We compute
the original Transformer block-by-block. Each host is responsible for one iteration of the query’s outer
loop, while the key-value blocks rotate among the hosts. As visualized, a device starts with the first
query block on the left; then we iterate over the key-value blocks sequence positioned horizontally.
The query block, combined with the key-value blocks, are used to compute self-attention (yellow
box), whose output is pass to feedforward network (cyan box).

between hosts is denoted as B. It’s worth noting that our approach involves interactions only with
the immediately previous and next hosts in a circular configuration, thus our analysis applies to both
GPU all-to-all topology and TPU torus topology. Let’s consider the variables: block size denoted
as c and hidden size as d. When computing blockwise self-attention, we require 2dc2 FLOPs for
calculating attention scores using queries and keys, and an additional 2dc2 FLOPs for multiplying
these attention scores by values. In total, the computation demands amount to 4dc2 FLOPs. We
exclude the projection of queries, keys, and values, as well as blockwise feedforward operations,
since they only add compute complexity without any communication costs between hosts. This
simplification leads to more stringent condition and does not compromise the validity of our approach.
On the communication front, both key and value blocks require a total of 2cd bytes. Thus, the
combined communication demand is 4cd bytes. To achieve an overlap between communication and

4

Ring Attention Fully Distributed Sequence
Ultra-Long Sequence Distributed Transformer

Figure 2. (i) and (ii) show the difference without and with fused communications. (iii) shows distributed self-attention’s forward pass
with fused communications. Note that the distributed self-attention outputs are not concatenated. (iv) LSS Transformer’s Backward pass.
Model parameters, except the positional embedding, are synchronized through gradient averaging. (v) The distributed self-attention’s
backward pass with reduce-scatter.

is linearly transformed into query, key and value segments.
Then, two all-gather communications are independently op-
erated on the key and value segments into the collected K
and V . Fig. 2(ii) shows the fused communication operation
in the forward pass, requiring only a single all-gather com-
munication. xi is linearly transformed into query segment
Qi. Meanwhile, xi is gathered into a temporary collected
sequence x, before x is linearly transformed into the col-
lected key and value vectors. The same technique is also
applied to backward pass, reducing the total number of
communications from 6 to 4 per attention layer.

Principle 4: Gradient Averaging Technique to Synchro-
nize GPUs and Avoid Concatenation. There are two issues
from Principles 1 and 3. First, since sequence parallel GPU
trains on the same model parameters but using different
input sequence segments, the gradients for the model pa-
rameters are different for each GPU. The second issue is
that the self-attention communication frequency needs to
be further reduced to achieve even better scalability and
parallel efficiency.

To address both issues, we use a gradient averaging tech-
nique to synchronize model parameters and avoid the con-
catenation for the GPUs’ individual self-attention outputs.
Therefore, communication frequency is reduced from 4 to
2 per attention layer. Figs. 2(iii)-(v) use a 2 GPU exam-
ple to demonstrate how this gradient averaging technique
is applied. In the forward pass for the self-attention in
Fig. 2(iii), a distributed query Qi is computed from the in-
put sequence segment xi. Meanwhile, the self-attention
input segments are gathered among GPUs before computing

collected K and V vectors using a single all-gather fused
communication, as explained before in Principle 3. Subse-
quent computations and memory storage are all distributed
and independently updated in the sequence dimension, pro-
ducing individual self-attention output for each GPU.

The individual self-attention outputs, however, are not con-
catenated across GPUs in Fig. 2(iii). Instead, the LSS
Transformer allows each GPU to use its assigned sequence
segment and individual self-attention output to compute a
partial cross-entropy loss and gradients in the backward
pass in Figs. 2(iv) and (v). Note that the backward pass
in Fig. 2(v) uses reduce-scatter as the backward operation
for the all-gather in the forward pass. Finally, the averaged
gradients are computed and used for synchronized model pa-
rameter updates before training on the next data batch. One
important technical detail to mention is that the averaged
gradients are not computed for the positional embeddings,
which are distributed parameters across GPUs and should
not be synchronized.

To understand why this gradient averaging technique can
avoid self-attention concatenation and synchronize model
parameters at the same time, let us assume that the predicted
sequence output from transformer is y and its true label
is ỹ. The cross-entropy loss for the whole sequence, de-
noted as L(y, ỹ), equals the average of individual token’s
loss: L(y, ỹ) = 1

lx

Plx
i=1 L(yi, ỹi), where lx is sequence

length. According to the gradient summation rule, the gradi-
ent of L(y, ỹ) with respect to model parameters, denoted as
rL(y, ỹ), equals the averaged gradient of each token’s loss:
rL(y, ỹ) = 1

lx

Plx
i=1 rL(yi, ỹi). Therefore, there is no

Nvidia Context Parallel

31

ØReduce Amount of Tokens
ØCurrent practice: divide input to tokens, feed all tokens to the model
ØFeed the model less tokens: BEFORE tokens are ingested or DURING passing through the model

(Learned) Token Pruning Adaptive Patching (ViT)

Methods for Longer Sequence

Learned Token Pruning for Transformers KDD ’22, August 14–18, 2022, Washington, DC, USA.

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.

This is the best restaurant, and I will be returning for another meal.

Layer 1

Layer 4

Layer 8

Layer 12

Positive SentimentClassification

15 tokens

11 tokens

4 tokens

2 tokens

Figure 2: (Left) Schematic of tokenpruning for a sentiment analysis task. Unimportant tokens are pruned as the input sequence
passes through the layers. (Right) An example of attention probability in a single head where amore important token receives
more attention fromother tokens. Thus each token’s importance score is computed by taking the average attention probability
it receives, which is computed by taking the column mean of the attention probability.

prune attention heads and �lters of weight matrices. [15, 29] dy-
namically determines structured pruning ratios during inference.
Recent block pruning schemes chunk weight matrices into multiple
blocks and prune them based on group Lasso optimization [26],
adaptive regularization [53], and movement pruning [24]. All of
these methods correspond to weight pruning, where model parame-
ters (i.e., weights) are pruned.

Recently, there has been work on pruning input sentences to
transformers, rather than model parameters. This is referred to
as token pruning, where less important tokens are progressively
removed during inference. PoWER-BERT [13], one of the earliest
works, proposes to directly learn token pruning con�gurations.
LAT [21] extends this idea by introducing LengthDrop, a procedure
in which a model is trained with di�erent token pruning con�gu-
rations, followed by an evolutionary search. This method has an
advantage that the former training procedure need not be repeated
for di�erent pruning ratios of the same model. While these meth-
ods have shown a large computation reduction on various NLP
downstream tasks, they �x a single token pruning con�guration
for the entire dataset. That is, they prune all input sequences to
the same length. However, as shown in Figure 1, input sequence
lengths vary greatly within a task. As a consequence, �xing a sin-
gle pruning con�guration can under-prune shorter sequences so
as to retain su�cient tokens for processing longer sequences or,
conversely, over-prune longer sequences to remove su�cient to-
kens to e�ciently process shorter sequences. More importantly,
a single pruning con�guration lacks robustness against input se-
quence length variations, where input sentences at inference time
are longer than those in the training dataset [32].

In contrast, SpAtten [49] circumvents this issue by assigning a
pruning con�guration proportional to the input sequence length.
While this allows pruning more tokens from longer sequences and
fewer tokens from shorter ones, it is not adaptive to individual in-
put sequences as it assigns the same con�guration to all sequences

with the same length regardless of their contents. In addition, the
pruning con�gurations are determined heuristically and thus can
result in a suboptimal solution. Recently, TR-BERT [54] proposes to
learn a RL policy network to apply adaptive pruning con�gurations
for each input sequence. However, as noted by the authors, the
problem has a large search spaces which can be hard for RL to solve.
This issue is mitigated by heuristics involving imitation learning
and sampling of action sequences, which signi�cantly increases
the cost of training. Importantly, all of the aforementioned token
pruning methods depend partially or entirely on top-: operation for
selecting the : most important tokens during inference or training.
This operation can be costly without specialized hardware support,
as discussed in [49]. LTP, on the other hand, is based on a fully
learnable threshold-based pruning strategy. Therefore, it is (i) adap-
tive to both input length and content, (ii) robust to sentence length
variations, (iii) computationally e�cient, and (iv) easy to deploy.

3 METHODOLOGY

3.1 Background
BERT [7] consists of multiple transformer encoder layers [45]
stacked up together. A basic transformer encoder layer consists
of a multi-head attention (MHA) block followed by a point-wise
feed-forward (FFN) block, with residual connections around each.
Speci�cally, an MHA consists of #⌘ independently parameter-
ized heads. An attention head ⌘ in layer ; is parameterized by
W(⌘,;)

:
, W(⌘,;)

@ , W(⌘,;)
E 2 R3⌘⇥3 ,W(⌘,;)

> 2 R3⇥3⌘ , where 3⌘ is typ-
ically set to 3/#⌘ and 3 is the feature dimension. We drop the
superscript ; for simplicity in the following formula. The MHA
measures the pairwise importance of each token on every other
token in the input:

MHA(x) =
#⌘’
⌘=1

AttW(⌘)
:,@,E,>

(x), (1)

Alternative for Attention
Hierarchal Training
Attention Approximation
Cache Blocking
Sequence Parallelism
Reduce Amount of Tokens

Patch the images in a ”smarter” way

32

ØVery high resolution (up to 100,000 x 100,000 pixels)
ØUsed in pathology
ØEx: PAIP dataset

ØPancreas
ØDiagnostic: Perineural Invasion

ØSegmentation with Vision Transformer (ViT)

ØChallenge:
PAIP 2023: Tumor cellularity prediction in pancreatic cancer and colon cancer (transfer learning)

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer

* E. Zhang et al. Adaptive Patching for High-resolution
Image Segmentation with Transformers, SC’24

33

Adaptive Patching: Ingest Only the Data that Matters

4,096 patches 424 patches

Original Image
512x512

Canny Edge
Image

K0

K1

Morton Curve

Traditional Patching Proposed Adaptive Patching

Z-order Curve
Quadtree

Down-sampling

Transformer-based Model: ViT, UNTER, ViTUNET, Swin … etc

~10x ↓ Patches: ~100x ↓ Compute and Memory

1 2 3

4 4,

5

6

1

2

3

Fig. 1: Overview of AFP. The right-side flow (green) shows all the steps, starting from the original image, and ending up with
feeding the patches (tokens) to an intact transformer-based model. The reduction from 4,096 to 424 patches (of size 4⇥ 4)
while achieving the same dice score is from a real example of training 512⇥ 512 images from the PAIP [55] liver cancer

dataset on the UNTER [10] model: ⇠ 9.6⇥ reduction in sequence length, and ⇠ 12.7⇥ speedup in end-to-end training.

We summarize the core idea of each approach and their253

limitations in Table I. Hierarchical and attention approximation254

methods exploit the hierarchy and sparsity of the features255

inside the model. On the other hand, our solution is a256

lightweight mechanism that exploits the hierarchy and sparsity257

of features at different resolutions directly on the images in258

a pre-processing step, which leaves the attention mechanism259

and the model architecture intact.260

D. High-Resolution Segmentation261

High Resolution (HR) aggravates the long-sequence prob-262

lem. Initially, the common way in literature to handle this263

problem was to rely on a convolutional input encoder, which264

first down-samples the image to learn low-resolution fea-265

tures [57], [58] and then up-sample to complete the predic-266

tion [59]. To benefit from the effective entire-image receptive267

field of transformers, many efforts turned to transformer268

encoders (as pure ViT or CNN+ViT), and resorted to the269

techniques mentioned in the previous section for handling270

the long sequence problem. HRViT[60], HRFormer[61], and271

HRNet[62] learn the HR representations by cross-resolution272

stream. Vision-LongFormer [63] uses a pyramid-like hier-273

archical structure of models at different scales to combine274

local attention and global memory. HIPT [36] also applied a275

hierarchical pyramid transformer to a pathology dataset with 276

the utmost 4K2 resolution. However, in comparison to these 277

models, our method is a pre-processing strategy, which doesn’t 278

require additional revision to of the model or attention design. 279

III. ADAPTIVE PATCHING FOR HIGH-RESOLUTION 280

SEGMENTATION 281

Figure 1 gives an overview of the flow of AFP, in compar- 282

ison to the traditional method of dividing images uniformly 283

into equal-sized patches. AFP divides the image into patches 284

of different sizes based on the level of details, and then 285

downsamples the large patches so that all patches have the 286

same size. In the next section, we follow the flow of AFP 287

starting from the original image up until the patches are fed 288

to the model. 289

A. Quadtree-based Adaptive Patches 290

Image and Patches We use the following notation to distin- 291

guish the size of an ”image” and the ”patch” corresponding to 292

that image. Consider an image dataset D consisting of input 293

images x 2 RZ⇥Z where Z is the resolution of image x. 294

Then, the sequence of non-overlapping patches can be noted 295

as {xi}Ni=1 2 RN⇥P where N is the sequence length and P 296

is the patch size. For the traditional uniform grid patching in 297

ViT [2], the sequence length is N = (ZP)2. For an image x 298

4 / 12

34

(a) 5122@100% (b) Dice Score:100% (c) 73.32% (d) 77.31% (e) 78.32%

(f) 4, 0962@1.5% (g) Dice Score:100% (h) 71.32% (i) 75.77% (j) 79.63%

(k) 8, 1922@0.39% (l) Dice Score:100% (m) 71.32% (n) 75.77% (o) 79.63%

(p) 32, 7682@0.024% (q) Dice Score:100% (r) 69.88% (s) 74.96% (t) 78.98%

(u) 65, 53462@0.006%

(v) PAIP dataset images

(w) Dice Score:100%

(x) Ground Truth

(y) 69.88%

(z) TransUNet

(aa) 75.31%

(ab) UNETR

(ac) 77.77%

(ad) APF-UNETR

Fig. 2: Example of segmentation quality for PAIP dataset. From 4K2 to 64K2 we zoom-in to show a portion of the image.

V. CONCLUSION557

We propose a solution that adaptively patches high-558

resolution images based on image details, drastically reducing559

the number of patches fed to vision transformer models. This560

pre-processing approach incurs minimal overhead. We achieve 561

segmentation quality for 64K2 images comparable to SoTA 562

models operating on no more than 4K2, at much higher 563

efficiency (geomean speedup of 6.9⇥). 564

9 / 12

Tumor Cellularity Prediction in Pancreatic Cancer and Colon Cancer

35

Results: Speedup
TABLE II: Speedup of AFP end-to-end training for PAIP dataset at the same segmentation quality of the baseline. We use

the highest dice score of the baseline model (in Table III), and report the APF configuration with similar dice scores.

Resolution Model-Patch Sec/Image Sequence Length Quadtree
Depth

Dice Score
(%)

Speedup
(Sec/Image)

Speedup
(Time to Convergence)

512⇥ 512
1 GPU

APF-4 0.06495 1,024 7 77.88
7.48⇥ 12.71⇥UNETR-4 0.4863 16,384 - 77.31

1, 024⇥ 1, 024
8 GPUs

APF-8 0.14284 1,024 7 75.63
7.6⇥ 12.92⇥UNETR-8 1.0863 16,384 - 75.72

4, 096⇥ 4, 096
128 GPUs

APF-16 0.32231 2,116 8 75.74
5.77⇥ 9.8⇥UNETR-32 1.8613 16,384 - 75.77

8, 192⇥ 8, 192
256 GPUs

APF-16 1.1613 2,116 9 76.13
2.29⇥ 3.89⇥UNETR-64 2.6618 16,384 - 75.27

16, 384⇥ 16, 384
512 GPUs

APF-32 1.7613 1,024 9 75.92
2.9⇥ 4.93⇥UNETR-128 5.1179 16,384 - 75.89

32, 768⇥ 32, 768
1024 GPUs

APF-32 2.1567 2,116 10 75.32
3.79⇥ 6.44⇥UNETR-256 8.1896 16,384 - 74.96

65, 536⇥ 65, 536
2048 GPUs

APF-32 5.733 4,096 11 75.82
2.3⇥ 3.91⇥UNETR-512 13.218 16,384 - 75.31

dice score typically reported is the average of the 13 classes.386

BTCV is relatively low in resolution in comparison to the PAIP387

dataset (5122 vs. 64K2), yet is widely used as a benchmark388

by the high-resolution medical segmentation community.389

C. Models390

Because our method is a patching strategy, it can easily391

replace the uniform grid patching method typically used in392

transformers. In our experiments, we use one of the widely-393

used models, UNETR [10], as the baseline model we use for394

AFP to conduct experiments on the high-resolution medical395

image segmentation task. It is worth nothing that in all our re-396

sults we train the model from scratch for the target dataset: we397

do not do any pre-training on other datasets or fine-tune. We398

also report results for various other highly performing models399

as baselines, TransUnet [69], HIPT [36], Swin UNETR [70],400

ViT [2], and U-Net [54], to demonstrate different aspect about401

the performance and efficiency of AFP.402

UNETR uses a contraction-expansion pattern consisting403

of several transformers as an encoder. It is connected to404

the decoder via a skip connection. UNETR’s initial target405

application was 3D medical imaging for human organs. The406

original work [10] also discussed the impact of patch size on407

the model: the smaller the patch size, the better the model per-408

formance will be. However, due to the memory capacity and409

compute power limitation associated with quadratic attention,410

the authors reported that conducting experiments with a small411

patch size is unfeasible. Since our target experimental data is412

2D medical images, we only swap the 3D convolution and413

deconvolution blocks in UNETR with the 2D version without414

additional changes to the model structure. Other than that, we415

make no changes nor do we tune the original UNETR model.416

D. Training Setup 417

The loss function we applied is a combination of dice loss 418

and binary cross-entropy loss: 419

L(ŷ, y) = w · Lbce(ŷ, y) + (1� w) · Ldice(ŷ, y) (7)

= �w · 1

N

NX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)]

(8)

+ (1� w) · (1�
2
PN

i=1(ŷi · yi) + ✏
PN

i=1 ŷi +
PN

i=1 yi + ✏
) (9)

where L(ŷ, y) represents the combined loss function, com- 420

posed of a weighted sum of Binary Cross-Entropy (BCE) 421

loss and dice loss. w is the weight parameter controlling 422

the contribution of BCE loss versus the dice loss:, we set 423

it to 0.5 during the experiments. ✏ is a smoothing term, 424

and we keep it to 1.0 during the experiments. For the res- 425

olutions [512, 1024, 4, 096], all models were trained with a 426

batch size of 16, using the AdamW optimizer [71] with an 427

initial learning rate of 0.0001 for 300 epochs and decay by a 428

factor of 0.1 at epoch step [500, 750, 875]. For the resolutions 429

[8, 192, 16, 384, 32, 768, 65, 536], we countered the problem of 430

fitting a single sample in memory by tuning the sequence 431

length and training for 200 epochs. 432

E. Evaluation Metrics 433

For computational performance, we report the sec- 434

onds/image of end-to-end training. For the quantitative evalu- 435

ation of the segmentation result, we use the dice score, which 436

measures the similarity between a predicted segmentation 437

mask and the ground truth segmentation mask. The dice score 438

(also known as the dice similarity coefficient) is defined as: 439

Dice(X,Y) =
2⇥ |X \ Y |
|X|+ |Y |

where X and Y are the two sets being compared. |X \ Y | 440

represents the cardinality of the intersection of sets X and 441

Y . |X| and |Y | represent the cardinality of sets X and Y 442

6 / 12

36

Results: Quality

TABLE III: Improvement in quality of segmentation for the PAIP dataset against different baselines.

Resolution Model Patch GPUs Sec/Image/GPU Depth Sequence Length Dice Score Dice Improvement

512⇥ 512

APF
(+UNTER)

2 1 0.06112 8 729 78.32

4.11%

4 1 0.05975 7 676 77.88
8 1 0.05812 6 576 75.17

UNETR
4 1 0.4863 - 16,384 77.31
8 1 0.3746 - 4,096 75.23
16 1 0.1477 - 1,024 74.88

TransUNet - 1 0.1783 - 1,024 73.32
U-Net - 1 0.0438 - - 70.32

1, 024⇥ 1, 024

APF
(+UNTER)

2 8 0.2314 9 1,024 78.42

7.10%

4 8 0.1786 8 900 77.64
8 8 0.1428 7 784 75.63
16 8 0.1313 6 576 74.88

UNETR

8 32 1.0863 - 16,384 75.72
16 16 0.9731 - 4,096 75.12
32 8 0.8874 - 1,024 73.22

TransUNet - 8 1.3247 - 4,096 72.38
U-Net - 1 0.0981 - - 68.92

4, 096⇥ 4, 096

APF
(+UNTER)

2 128 0.6938 11 4,096 79.63

5.09%

4 128 0.4695 10 2,116 78.17
8 64 0.3824 9 1,521 75.74
16 32 0.3223 8 1,024 74.96

UNETR 32 128 1.8613 - 16,384 75.77
TransUNet - 128 2.1637 - - 71.32
U-Net - 16 0.3712 - - 64.11

8, 192⇥ 8, 192

APF
(+UNTER)

2 256 2.3314 12 10,609 79.56

5.70%

4 256 2.1314 11 8,464 78.31
8 128 1.7867 10 4,096 77.61
16 64 1.1613 9 2,116 76.13

UNETR 64 256 2.6618 - 16,384 75.27
TransUNet - 256 2.3678 - - 70.89
U-Net - 32 1.2858 - - 63.21

16, 384⇥ 16, 384

APF
(+UNTER)

2 512 4.8792 13 16,384 80.62

6.23%

4 256 3.1231 12 8,464 79.31
8 256 1.8574 11 4,096 78.84
16 128 1.6421 10 2,116 77.43

UNETR 128 512 5.1179 - 16,384 75.89
TransUNet - 512 6.1296 - - 70.46
U-Net - 256 2.7825 - - 62.97

32, 768⇥ 32, 768

APF
(+UNTER)

4 1024 7.8916 13 16,384 78.98

5.36%

8 512 6.1792 12 8,464 78.31
16 512 4.1685 11 4,096 77.61
32 256 2.1567 10 2,116 76.13

UNETR 256 1024 8.1896 - 16,384 74.96
TransUNet - 1024 10.001 - - 69.88
U-Net - 512 4.2714 - - 61.38

65, 536⇥ 65, 536

APF
(+UNTER)

8 2048 12.697 13 16,384 77.77

3.27%

16 1024 8.793 12 8,464 76.11
32 512 5.733 11 4,096 75.41
64 256 3.961 10 2,116 75.13

UNETR 512 2048 13.218 - 16,384 75.31
TransUNet - 2048 14.3516 - - 67.67
U-Net - 1024 5.961 - - 59.69

respectively. A dice score of 100% means identical similarity443

between the prediction and the ground truth.444

F. Results445

1) Speedup of End-to-end Training at the Same Segmen-446

tation Quality: In Table II we show that under the same dice447

score, AFP is just a pre-processing step (on top of UNTER448

as baseline) that achieves a geomean speedup of 4.1⇥, if we449

compare on the basis that both AFP and the baseline run to450

the same number of epochs. Since we further observe the451

convergence speed in AFP to be 1.7⇥ faster, the speedup to452

get to the same dice score goes up to the geomean speedup453

of 6.9⇥. At the highest resolution of 642 training on 2,048 454

GPUs, AFP achieves ⇠4⇥ speedup. It is worth mentioning 455

that AFP also brings significant savings in memory and not 456

just speedup. 457

2) Gain in Segmentation Quality: Table III shows segmen- 458

tation improvement over different models, at different PAIP 459

resolutions. At similar resolution, with adaptive patches we can 460

use nearly 8⇥ smaller patch sizes at the same, computational 461

complexity, and improve upon the original model dice score 462

with an average of 5.5%. It is worth noting that on top of 463

improving the dice score, we achieve those improvements with 464

additional speedups to the training time up to 4.6⇥. 465

7 / 12

ØSince we can reduce the sequence length
ØWe could increase the patch size, get better results (for the same compute budget)

TABLE III: Improvement in quality of segmentation for the PAIP dataset against different baselines.

Resolution Model Patch GPUs Sec/Image/GPU Depth Sequence Length Dice Score Dice Improvement

512⇥ 512

APF
(+UNTER)

2 1 0.06112 8 729 78.32

4.11%

4 1 0.05975 7 676 77.88
8 1 0.05812 6 576 75.17

UNETR
4 1 0.4863 - 16,384 77.31
8 1 0.3746 - 4,096 75.23
16 1 0.1477 - 1,024 74.88

TransUNet - 1 0.1783 - 1,024 73.32
U-Net - 1 0.0438 - - 70.32

1, 024⇥ 1, 024

APF
(+UNTER)

2 8 0.2314 9 1,024 78.42

7.10%

4 8 0.1786 8 900 77.64
8 8 0.1428 7 784 75.63
16 8 0.1313 6 576 74.88

UNETR

8 32 1.0863 - 16,384 75.72
16 16 0.9731 - 4,096 75.12
32 8 0.8874 - 1,024 73.22

TransUNet - 8 1.3247 - 4,096 72.38
U-Net - 1 0.0981 - - 68.92

4, 096⇥ 4, 096

APF
(+UNTER)

2 128 0.6938 11 4,096 79.63

5.09%

4 128 0.4695 10 2,116 78.17
8 64 0.3824 9 1,521 75.74
16 32 0.3223 8 1,024 74.96

UNETR 32 128 1.8613 - 16,384 75.77
TransUNet - 128 2.1637 - - 71.32
U-Net - 16 0.3712 - - 64.11

8, 192⇥ 8, 192

APF
(+UNTER)

2 256 2.3314 12 10,609 79.56

5.70%

4 256 2.1314 11 8,464 78.31
8 128 1.7867 10 4,096 77.61
16 64 1.1613 9 2,116 76.13

UNETR 64 256 2.6618 - 16,384 75.27
TransUNet - 256 2.3678 - - 70.89
U-Net - 32 1.2858 - - 63.21

16, 384⇥ 16, 384

APF
(+UNTER)

2 512 4.8792 13 16,384 80.62

6.23%

4 256 3.1231 12 8,464 79.31
8 256 1.8574 11 4,096 78.84
16 128 1.6421 10 2,116 77.43

UNETR 128 512 5.1179 - 16,384 75.89
TransUNet - 512 6.1296 - - 70.46
U-Net - 256 2.7825 - - 62.97

32, 768⇥ 32, 768

APF
(+UNTER)

4 1024 7.8916 13 16,384 78.98

5.36%

8 512 6.1792 12 8,464 78.31
16 512 4.1685 11 4,096 77.61
32 256 2.1567 10 2,116 76.13

UNETR 256 1024 8.1896 - 16,384 74.96
TransUNet - 1024 10.001 - - 69.88
U-Net - 512 4.2714 - - 61.38

65, 536⇥ 65, 536

APF
(+UNTER)

8 2048 12.697 13 16,384 77.77

3.27%

16 1024 8.793 12 8,464 76.11
32 512 5.733 11 4,096 75.41
64 256 3.961 10 2,116 75.13

UNETR 512 2048 13.218 - 16,384 75.31
TransUNet - 2048 14.3516 - - 67.67
U-Net - 1024 5.961 - - 59.69

respectively. A dice score of 100% means identical similarity443

between the prediction and the ground truth.444

F. Results445

1) Speedup of End-to-end Training at the Same Segmen-446

tation Quality: In Table II we show that under the same dice447

score, AFP is just a pre-processing step (on top of UNTER448

as baseline) that achieves a geomean speedup of 4.1⇥, if we449

compare on the basis that both AFP and the baseline run to450

the same number of epochs. Since we further observe the451

convergence speed in AFP to be 1.7⇥ faster, the speedup to452

get to the same dice score goes up to the geomean speedup453

of 6.9⇥. At the highest resolution of 642 training on 2,048 454

GPUs, AFP achieves ⇠4⇥ speedup. It is worth mentioning 455

that AFP also brings significant savings in memory and not 456

just speedup. 457

2) Gain in Segmentation Quality: Table III shows segmen- 458

tation improvement over different models, at different PAIP 459

resolutions. At similar resolution, with adaptive patches we can 460

use nearly 8⇥ smaller patch sizes at the same, computational 461

complexity, and improve upon the original model dice score 462

with an average of 5.5%. It is worth noting that on top of 463

improving the dice score, we achieve those improvements with 464

additional speedups to the training time up to 4.6⇥. 465

7 / 12

37

AI for Cone-beam X-ray Computed Tomography

ØX-ray CT widely used

ØCurrent Generation X-ray CT rely on cone-beam scanners

ØHigher quality; high-resolution real-time distributed reconstruction is intractable

ØUse ViT to do geometry correction to make the real-time reconstruction tractable
Ø4K3 in 16 seconds and 8K3 in a few minutes (on 1,024 GPUs)

* P. Chen, M. Wahib et al. Scalable FBP decomposition for cone-beam CT reconstruction, SC’21

Scans from Southampton University for Bio research

38high-resolution Bumblebee generated on ABCI supercomputer

39high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

40high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

41high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

42high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

43high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

44high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

45high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

46high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

47high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

48high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

49high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

50high-resolution Bumblebee generated on ABCI supercomputer

Scans from Southampton University for Bio research

51

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

52

SoTA Models Overwhelmed by High-resolution

ØIn Segmentation
Ø We must map encoded features back to full-resolution pixel predictions
Ø CNN mask decoder (too much memory required)

Meta’s SAM 2 Model** https://arxiv.org/pdf/2408.00714

https://arxiv.org/pdf/2408.00714

53

Symmetrical Hierarchical Forest with Pretrained ViT
Encoder for High-Resolution Medical Segmentation

!: Image

": Mask

Dataset 2-3: Hierarchical Forest Patching1:Hiera-Edges

!!": ($"	&")

!!#: ($#	&#)

!!$: ($$	&$)

!!

!"

!#

![",#,$]

(",#,$

4: Training Stage

ViT Image Encoder

"$%&'(($[!,",#], , $[!,",#])

!(

5: Inference Stage
(w/ De-patching)

ViT Image Encoder

$' ⟸ $',, "$-.$(y,, y)

!, (⟹	 (!", (")

!, (⟹ (!#, (#)

!, (⟹ (!$, ($)

!!

!"

!#
!$%

…

Train Stage Patching⟹

!$%⟸ Inference De-patching

+(

Down-samplingZ-order curvePatching!'

!(

Figure 2: Overview of SHF. SHF begins with the original image and ends with feeding the extracted patches
(tokens) into an intact transformer-based model. In a real training example on the SAM [1] model using 512⇥512
images from the PAIP [2] liver cancer dataset, SHF reduces the number of patches from 4,096 to 512 (each of
size 4⇥4) while maintaining the same Dice score. This results in an ⇠8⇥ reduction in sequence length and a
⇠7.53⇥ speedup in end-to-end training.

hierarchy information. Using the SHF scheme, we demonstrate that the model receives sufficient57

information about the spatial hierarchy, allowing us to eliminate additional model components (such58

as U-Net [20] or convolution decoding blocks) that would otherwise be required. Notably, the use59

of additional components (e.g. the convolution decoder in SAM 2 [19]) can lead to high memory60

demands to store activations for high-resolution masks (e.g. over 20GB of memory for storing mask61

activations when using SAM 2 on 64K2 images). By employing a transformer encoder-only design62

with hierarchical forest and post-depatching, we can use smaller patch sizes, enabling self-attention63

to capture the spatial hierarchy more effectively than larger patches and additional mechanisms (such64

as U-Net or convolution decoding blocks). As an added benefit, our method simplifies model design65

and allows for swapping in different encoders, as it is a data-based approach that operates on the66

input and output of the transformer encoder without modifying the encoder itself. The contributions67

of this work are as follows:68

• Symmetrical Hierarchical Forest. By applying the Symmetrical Hierarchical Forest (SHF), we69

can extract the hierarchical information directly and eliminate the expert knowledge required70

for tuning hyper-parameters. Additionally, we completely discard the convolution decoder,71

significantly reducing the computational and memory overhead (⇠75% GPUs) of mask processing72

in high-resolution segmentation tasks. Finally, by downscaling redundant regions in the input73

image space, we achieve a quadratic reduction in the computational cost of the ViT encoder.74

• Long Context Segmentation. To demonstrate the efficiency of SHF, we conducted experiments75

on high-resolution medical imaging datasets, retrofitting state-of-the-art (SoTA) models such as76

SAM 1 [1] and SAM 2 [19] with our SHF scheme in place of their convolution decoders. When77

comparing models retrofitted with SHF to SoTA models without SHF, high-resolution pathology78

datasets (e.g. the PAIP dataset, ranging from 5122 to 64K2 pixels) and 3D MRI datasets (BTCV,79

KiTS) benefit from efficiency of SHF, allowing patch sizes as small as 2⇥2 pixels and 2⇥2⇥280

voxels. At the same performance level, we achieve a 3⇥ to 32⇥ speedup on the PAIP dataset, or,81

with the same computational budget, a 7.03% increase in Dice score at 64K2 resolution. On 3D82

medical imaging datasets, such as BTCV and KiTS, we see a ⇠6⇥ training speed improvement83

3

Remove Decoder
Apply a reverse depatching scheme
to the output embeddings of the
transformer encoder, eliminating the
need for convolution-based decoders

54

#

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

(a) Edge Image (b) Sequence Length=256 (c) Sequence Length=1024 (d) Sequence Length=4096

(e) Edge MRI (f) Sequence Length=260 (g) Sequence Length=1030 (h) Sequence Length=4096

Figure 2. Average quadtree patch size [9.37, 20.21, 30.73] of training images in PAIP lead to empirical linear scaling of the corresponding
average sequence length [677.7, 286.9, 127.5], for different split values [20, 50, 100].

(a) v = 20, Avg patch size=9.37 (b) v = 50, Avg patch size=20.21 (c) v = 100, Avg patch size=30.73

(d) v = 20, Avg length=677.7 (e) v = 50, Avg length=286.9 (f) v = 100, Avg length=127.5

Figure 3. Average quadtree patch size [9.37, 20.21, 30.73] of training images in PAIP lead to empirical linear scaling of the corresponding
average sequence length [677.7, 286.9, 127.5], for different split values [20, 50, 100].

8

#

Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 5. Improvement in quality of segmentation for the PAIP dataset against different baselines.

Resolution Model Patch GPUs Sec/Image/GPU Depth Sequence Length Dice Score Dice Improvement

512⇥ 512

SAP+SAM 8 1 0.0438 6 512 75.31

+0.14

SAM 16 1 0.1983 - 1,024 61.39
AP+UNTER 8 1 0.0581 6 576 75.17
UNETR 16 1 0.1477 - 1,024 74.88
TransUNet - 1 0.1783 - - 73.32
UNet - 1 0.0438 - - 70.32

1, 024⇥ 1, 024

SAP+SAM 2 1 0.0991 9 1,024 78.67

+0.25

SAM 8 8 0.3826 - 16,384 66.56
AP+UNTER 2 8 0.2314 9 1,024 78.42
UNETR 8 32 1.0863 - 16,384 75.72
TransUNet - 8 1.3247 - - 72.38
UNet - 1 0.0981 - - 68.92

4, 096⇥ 4, 096

SAP+SAM 2 8 0.3766 11 4,096 78.67

+0.14

SAM 32 64 1.6183 - 16,384 71.05
AP+UNTER 2 128 0.6938 11 4,096 79.63

UNETR 32 128 1.8613 - 16,384 75.77
TransUNet - 128 2.1637 - - 71.32
UNet - 16 0.3712 - - 64.11

8, 192⇥ 8, 192

SAP+SAM 2 16 1.5327 12 8192 79.68

+0.12

SAM 64 128 2.5168 - 16,384 67.31
AP+UNTER 2 256 2.3314 12 10,609 79.56
UNETR 64 256 2.6618 - 16,384 75.27
TransUNet - 256 2.3678 - - 70.89
UNet - 32 1.2858 - - 63.21

16, 384⇥ 16, 384

SAP+SAM 2 32 3.2741 13 16,384 80.98

+0.36

SAM 128 256 5.6714 - 16,384 67.63
AP+UNTER 2 512 4.8792 13 16,384 80.62
UNETR 128 512 5.1179 - 16,384 75.89
TransUNet - 512 6.1296 - - 70.46
UNet - 256 2.7825 - - 62.97

32, 768⇥ 32, 768

SAP+SAM 4 64 3.4631 13 16,384 81.43

+2.45

SAM 256 512 9.1213 - 16,384 62.34
AP+UNTER 4 1024 7.8916 13 16,384 78.98
UNETR 256 1024 8.1896 - 16,384 74.96
TransUNet - 1024 10.001 - - 69.88
UNet - 512 4.2714 - - 61.38

65, 536⇥ 65, 536

SAP+SAM 8 256 3.6112 13 16,384 82.96

+5.19

SAM 1024 1024 12.983 - 16,384 61.68
AP+UNTER 8 2048 12.697 13 16,384 77.77
UNETR 1024 2048 13.218 - 16,384 75.31
TransUNet - 2048 14.352 - - 67.67
UNet - 1024 5.961 - - 59.69

sampling [1, 11, 28, 37, 47], in frequent self-attention up-459

dates [35, 45], or their combinations [6]. These methods re-460

duce the calculation amount of the attention mechanism, but461

when it is reduced to a certain level, there will be a loss [39].462

3) Multi-level model, Hierarchical training of ViTs com-463

prises multiple transformers being trained at different levels464

of resolution [7, 10, 40, 46]. However, employing multiple465

transformers increases the training time and memory usage.466

Moreover, managing multiple Interacting transformers are467

complex, demanding hyperparameter tuning for the model468

at each resolution level.469

8. Conclusion 470

In this paper, we propose a solution that adaptively patches 471

high-resolution images based on image details, drastically 472

reducing the number of patches fed to vision transformer 473

models. This pre-processing approach incurs minimal over- 474

head. We achieve segmentation quality for 64K2 im- 475

ages comparable to SoTA models operating on no more 476

than 4K2, at much higher efficiency (geomean speedup of 477

6.9⇥). 478

References 479

[1] Iz Beltagy, Matthew E Peters, and Arman Cohan. Long- 480

former: The long-document transformer. arXiv preprint 481

arXiv:2004.05150, 2020. 7 482

7

Symmetrical Hierarchical Forest with Pretrained ViT
Encoder for High-Resolution Medical Segmentation

55

Can ViT Learn Where to Look?

Ø HUMANS tell the model where to look
Ø Can the model learn where to look?

Ø by being fed the spatial hierarchy

Ø

compared to weights connecting elements of separate trees. The
H-DAG weights are computed based on five different properties that
we call cohesion criteria: level depth (LD), node depth (ND), shared
ratio (SR), top distance (TD) and centroid distance (CD). Scores for
each of these criteria are calculated as real numbers between 0
and 1 and are an expression of how strongly each of the criteria sup-
ports the belief that two hierarchies are components of the same
tree. The following paragraphs explain the criteria, the intuition
behind them, as well as how their respective scores are calculated.

Level depth (LD) represents the minimum number of height
levels between one of the two hierarchy tops and a contact patch
(i.e., a node with parents in both hierarchies). The intuition behind
the LD criterion is that lower values translate to shallow rifts
between hierarchies, and consequently, an increased probability
that the hierarchies belong to the same tree. The LD score between
two connected hierarchies x and y is calculated by

SLDðx; yÞ ¼
1

minr2frx ;ryg;i2Hx ;i2Hy dhðr; iÞ ð2Þ

where rx is the root node, Hx is the set of nodes of hierarchy x and
dhðr; iÞ is the difference in height levels between nodes r and i.

Node depth (ND) is similar to the level depth but considers the
minimum number of nodes necessary to reach a contact patch

from either hierarchy top. It complements the level depth by
allowing deeper rifts between two hierarchies that are otherwise
close to each other. The associated score is calculated by

SNDðx; yÞ ¼
1

minr2frx ;ryg;i2Hx ;i2Hy dnðr; iÞ
ð3Þ

where dnðr; iÞ calculates the path length in number of nodes
between P-DAG nodes r and i.

Shared ratio (SR) calculates the number of cells of all the shared
patches as a proportion of the total number of cells spanned by the
two hierarchies. It is expected that a higher SR correlates with hier-
archies of relatively close heights that may represent symmetrical
branches of the same trees. Its score equates to the ratio:

SSRðx; yÞ ¼
jCell SetðHx \ HyÞj
jCell SetðHx [HyÞj

ð4Þ

Top distance (TD) measures the horizontal distance between the
top patches of the two hierarchies. If a top patch has more than one
cell, its centroid is considered instead. The closer two hierarchy
tops are, the higher the chance of belonging to the same tree.
The associated score is inverse proportional to the calculated
distance:

Fig. 4. Overview of the segmentation method: (a) the initial LiDAR point cloud, (b) height raster image, (c) patches formed with adjacent cells of the same value, (d)
hierarchized patches, (e) weighted graph, (f) graph partition, (g) partition result on the raster, (h) segmented point cloud.

34 V.F. Strîmbu, B.M. Strîmbu / ISPRS Journal of Photogrammetry and Remote Sensing 104 (2015) 30–43

+

56

Visual Scene Recovery from Wi-Fi CSI

ØCSI-Inpainter: CSI-guided obstacle removal

* Chen et al, Trans-Inpainter: A Transformer Model for High Accuracy Image Inpainting from Channel State Information, IEEE IoT’25

57

Visual Scene Recovery from Wi-Fi CSI

58

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

59

Tokenizing Spatio-temporal Data is Tricky

ViViT

3.1. Overview of Vision Transformers (ViT)

Vision Transformer (ViT) [18] adapts the transformer
architecture of [68] to process 2D images with minimal
changes. In particular, ViT extracts N non-overlapping im-
age patches, xi 2 Rh⇥w, performs a linear projection and
then rasterises them into 1D tokens zi 2 Rd. The sequence
of tokens input to the following transformer encoder is

z = [zcls,Ex1,Ex2, . . . ,ExN] + p, (1)

where the projection by E is equivalent to a 2D convolution.
As shown in Fig. 1, an optional learned classification token
zcls is prepended to this sequence, and its representation at
the final layer of the encoder serves as the final represen-
tation used by the classification layer [17]. In addition, a
learned positional embedding, p 2 RN⇥d, is added to the
tokens to retain positional information, as the subsequent
self-attention operations in the transformer are permutation
invariant. The tokens are then passed through an encoder
consisting of a sequence of L transformer layers. Each layer
` comprises of Multi-Headed Self-Attention [68], layer nor-
malisation (LN) [2], and MLP blocks as follows:

y
` = MSA(LN(z`)) + z

` (2)

z
`+1 = MLP(LN(y`)) + y

`. (3)

The MLP consists of two linear projections separated by a
GELU non-linearity [28] and the token-dimensionality, d,
remains fixed throughout all layers. Finally, a linear classi-
fier is used to classify the encoded input based on zLcls 2 Rd,
if it was prepended to the input, or a global average pooling
of all the tokens, zL, otherwise.

As the transformer [68], which forms the basis of
ViT [18], is a flexible architecture that can operate on any
sequence of input tokens z 2 RN⇥d, we describe strategies
for tokenising videos next.

3.2. Embedding video clips

We consider two simple methods for mapping a video
V 2 RT⇥H⇥W⇥C to a sequence of tokens z̃ 2

Rnt⇥nh⇥nw⇥d. We then add the positional embedding and
reshape into RN⇥d to obtain z, the input to the transformer.

Uniform frame sampling As illustrated in Fig. 2, a
straightforward method of tokenising the input video is to
uniformly sample nt frames from the input video clip, em-
bed each 2D frame independently using the same method
as ViT [18], and concatenate all these tokens together. Con-
cretely, if nh · nw non-overlapping image patches are ex-
tracted from each frame, as in [18], then a total of nt ·nh ·nw

tokens will be forwarded through the transformer encoder.
Intuitively, this process may be seen as simply constructing
a large 2D image to be tokenised following ViT. We note
that this is the input embedding method employed by the
concurrent work of [4].

#

!

"

Figure 2: Uniform frame sampling: We simply sample nt frames,
and embed each 2D frame independently following ViT [18].

!

"
#

Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.

Tubelet embedding An alternate method, as shown in
Fig. 3, is to extract non-overlapping, spatio-temporal
“tubes” from the input volume, and to linearly project this to
Rd. This method is an extension of ViT’s embedding to 3D,
and corresponds to a 3D convolution. For a tubelet of di-
mension t⇥ h⇥w, nt = b

T
t c, nh = b

H
h c and nw = b

W
w c,

tokens are extracted from the temporal, height, and width
dimensions respectively. Smaller tubelet dimensions thus
result in more tokens which increases the computation.
Intuitively, this method fuses spatio-temporal information
during tokenisation, in contrast to “Uniform frame sam-
pling” where temporal information from different frames is
fused by the transformer.

3.3. Transformer Models for Video

As illustrated in Fig. 1, we propose multiple transformer-
based architectures. We begin with a straightforward ex-
tension of ViT [18] that models pairwise interactions be-
tween all spatio-temporal tokens, and then develop more
efficient variants which factorise the spatial and temporal
dimensions of the input video at various levels of the trans-
former architecture.

Model 1: Spatio-temporal attention This model sim-
ply forwards all spatio-temporal tokens extracted from the
video, z0, through the transformer encoder. We note that
this has also been explored concurrently by [4] in their
“Joint Space-Time” model. In contrast to CNN architec-
tures, where the receptive field grows linearly with the
number of layers, each transformer layer models all pair-

Is Space-Time Attention All You Need for Video Understanding?

fra
m

e
t

fra
m

e
t -

 � <latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit>
fra

m
e

t +
 � <latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit><latexit sha1_base64="AU/vq+DAgMm1x9RhUc20aA7BJwY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3Q+5RDqo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtG1n4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3XPrXv3l7XGTRFHGU7gFM7BgytowB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AkYyPHA==</latexit>

Space Attention (S) Joint Space-Time
 Attention (ST)

Divided Space-Time
 Attention (T+S)

 Sparse Local Global
 Attention (L+G)

 Axial Attention
 (T+W+H)

Figure 2. Visualization of the five space-time self-attention schemes studied in this work. Each video clip is viewed as a sequence of
frame-level patches with a size of 16 ⇥ 16 pixels. For illustration, we denote in blue the query patch and show in non-blue colors its
self-attention space-time neighborhood under each scheme. Patches without color are not used for the self-attention computation of the
blue patch. Multiple colors within a scheme denote attentions separately applied along different dimensions (e.g., space and time for
(T+S)) or over different neighborhoods (e.g., for (L+G)). Note that self-attention is computed for every single patch in the video clip, i.e.,
every patch serves as a query. We also note that although the attention pattern is shown for only two adjacent frames, it extends in the
same fashion to all frames of the clip.

s(`,a)
(p,t) = ↵

(`,a)
(p,t),(0,0)v

(`,a)
(0,0) +

NX

p0=1

FX

t0=1

↵
(`,a)
(p,t),(p0,t0)v

(`,a)
(p0,t0).

(7)

Then, the concatenation of these vectors from all heads
is projected and passed through an MLP, using residual
connections after each operation:

z0(`)
(p,t) = WO

2

664

s(`,1)
(p,t)
...

s(`,A)
(p,t)

3

775+ z(`�1)
(p,t) (8)

z(`)
(p,t) = MLP

⇣
LN

⇣
z0(`)

(p,t)

⌘⌘
+ z0(`)

(p,t). (9)

Classification embedding. The final clip embedding is
obtained from the final block for the classification token:

y = LN
⇣
z(L)
(0,0)

⌘
2 RD

. (10)

On top of this representation we append a 1-hidden-layer
MLP, which is used to predict the final video classes.

Space-Time Self-Attention Models. We can reduce the
computational cost by replacing the spatiotemporal atten-
tion of Eq. 5 with spatial attention within each frame only
(Eq. 6). However, such a model neglects to capture temporal

dependencies across frames. As shown in our experiments,
this approach leads to degraded classification accuracy com-
pared to full spatiotemporal attention, especially on bench-
marks where strong temporal modeling is necessary.

We propose a more efficient architecture for spatiotemporal
attention, named “Divided Space-Time Attention” (denoted
with T+S), where temporal attention and spatial attention
are separately applied one after the other. This architecture
is compared to that of Space and Joint Space-Time attention
in Fig. 1. A visualization of the different attention models
on a video example is given in Fig. 2. For Divided Attention,
within each block `, we first compute temporal attention by
comparing each patch (p, t) with all the patches at the same
spatial location in the other frames:

↵↵↵
(`,a)time
(p,t) = SM

0

@
q(`,a)

(p,t)p
Dh

>

·

k(`,a)

(0,0)

n
k(`,a)

(p,t0)

o

t0=1,...,F

�1

A .

(11)

The encoding z0(`)time
(p,t) resulting from the application of

Eq. 8 using temporal attention is then fed back for spatial

attention computation instead of being passed to the MLP. In
other words, new key/query/value vectors are obtained from
z0(`)time

(p,t) and spatial attention is then computed using Eq. 6.
Finally, the resulting vector z0(`)space

(p,t) is passed to the MLP
of Eq. 9 to compute the final encoding z(`)

(p,t) of the patch at
block `. For the model of divided attention, we learn dis-
tinct query/key/value matrices {W

(`,a)
Qtime , W

(`,a)
Ktime , W

(`,a)
V time}

TimesFormer

3. Masked-attention Mask Transformer

We now present Mask2Former. We first review a meta
architecture for mask classification that Mask2Former is
built upon. Then, we introduce our new Transformer de-
coder with masked attention which is the key to better con-
vergence and results. Lastly, we propose training improve-
ments that make Mask2Former efficient and accessible.

3.1. Mask classification preliminaries

Mask classification architectures group pixels into N

segments by predicting N binary masks, along with N cor-
responding category labels. Mask classification is suffi-
ciently general to address any segmentation task by assign-
ing different semantics, e.g., categories or instances, to dif-
ferent segments. However, the challenge is to find good
representations for each segment. For example, Mask R-
CNN [24] uses bounding boxes as the representation which
limits its application to semantic segmentation. Inspired by
DETR [5], each segment in an image can be represented as
a C-dimensional feature vector (“object query”) and can be
processed by a Transformer decoder, trained with a set pre-
diction objective. A simple meta architecture would con-
sist of three components. A backbone that extracts low-
resolution features from an image. A pixel decoder that
gradually upsamples low-resolution features from the out-
put of the backbone to generate high-resolution per-pixel
embeddings. And finally a Transformer decoder that oper-
ates on image features to process object queries. The final
binary mask predictions are decoded from per-pixel embed-
dings with object queries. One successful instantiation of
such a meta architecture is MaskFormer [14], and we refer
readers to [14] for more details.

3.2. Transformer decoder with masked attention

Mask2Former adopts the aforementioned meta archi-
tecture, with our proposed Transformer decoder (Figure 2
right) replacing the standard one. The key components of
our Transformer decoder include a masked attention opera-
tor, which extracts localized features by constraining cross-
attention to within the foreground region of the predicted
mask for each query, instead of attending to the full fea-
ture map. To handle small objects, we propose an efficient
multi-scale strategy to utilize high-resolution features. It
feeds successive feature maps from the pixel decoder’s fea-
ture pyramid into successive Transformer decoder layers in
a round robin fashion. Finally, we incorporate optimiza-
tion improvements that boost model performance without
introducing additional computation. We now discuss these
improvements in detail.

Backbone

Pixel Decoder

Transformer
Decoder

!×

mask

class

masked attention

add & norm

self-attention

add & norm

add & norm

FFN

V K Q

V K Q

mask
query

features
image

features

Figure 2. Mask2Former overview. Mask2Former adopts the
same meta architecture as MaskFormer [14] with a backbone, a
pixel decoder and a Transformer decoder. We propose a new
Transformer decoder with masked attention instead of the standard
cross-attention (Section 3.2.1). To deal with small objects, we pro-
pose an efficient way of utilizing high-resolution features from a
pixel decoder by feeding one scale of the multi-scale feature to one
Transformer decoder layer at a time (Section 3.2.2). In addition,
we switch the order of self and cross-attention (i.e., our masked
attention), make query features learnable, and remove dropout to
make computation more effective (Section 3.2.3). Note that posi-
tional embeddings and predictions from intermediate Transformer
decoder layers are omitted in this figure for readability.

3.2.1 Masked attention

Context features have been shown to be important for im-
age segmentation [7,8,63]. However, recent studies [22,46]
suggest that the slow convergence of Transformer-based
models is due to global context in the cross-attention layer,
as it takes many training epochs for cross-attention to learn
to attend to localized object regions [46]. We hypothesize
that local features are enough to update query features and
context information can be gathered through self-attention.
For this we propose masked attention, a variant of cross-
attention that only attends within the foreground region of
the predicted mask for each query.

Standard cross-attention (with residual path) computes

Xl = softmax(QlK
T
l
)Vl +Xl�1. (1)

Here, l is the layer index, Xl 2 RN⇥C refers to N

C-dimensional query features at the l
th layer and Ql =

fQ(Xl�1) 2 RN⇥C . X0 denotes input query features to
the Transformer decoder. Kl,Vl 2 RHlWl⇥C are the im-
age features under transformation fK(·) and fV (·) respec-
tively, and Hl and Wl are the spatial resolution of image
features that we will introduce next in Section 3.2.2. fQ,
fK and fV are linear transformations.

3

Mask2Fromer

60

How to Tokenize Spatio-temporal Data

ØDifferent tokenization schemes aligned with adaptive pathcing

We observe how Local and Global Frame Selection operate on a frame-by-frame basis to form quadtrees, while the other
three schemes work across three dimensions. Among these three, Batch and Temporal-Spatial Frame Selection divide the time
dimension, with the former using even divisions and the latter using uneven divisions.

20

12

Batch	Frame

FINAL

Batch Frame
Selection

Time

19

11

Fixed	Temporal

FINAL

Fixed Temporal
Frame Selection

Time

22

Global Frame Selection

FINAL

19

Local Frame SelectionFINAL

20

Local Frame SelectionFINAL

19

Local Frame SelectionFINAL

11

Fixed	Temporal

21

13

Temp-Spat	Frame

FINAL

Spatio-temporal
Frame Selection

Time

Local Frame Selection Global Frame Selection

Fixed Temporal
Frame Selection

Spatio-temporal
Frame Selection

Batched
Frame Selection

61

Adaptive Patching for Videos
ØFor videos we adaptively patch temporally

Ømerging spatial and temporal adaptiveness?
customize the adaptive scheme based on the nature of the input dataset? AP as a means
for compression, followed by a scheme to arrange patches to recreate the input video?

2

Video	Adaptive	Patching	Workflow

1 2

34
......

3D patches

65

Application in Video Action Recognition

Ø We use the Video Vision Transformer (ViViT) model for this
task, containing attention in the spatial and temporal dimensions

Ø AP able to achieve comparable metrics with up to 4x memory
reduction while maintaining the same number of patches

66

Application in Video Action Recognition

Ø We use the UNEt TRansformers (UNETR) model for this task,
combining a transformer encoder with a convolutional decoder

Ø AP able to achieve comparable metrics with up to 8x memory
reduction while maintaining the same number of patches

67

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

68

ORBIT-2: Scaling Exascale Vision Foundation
Models for Weather and Climate Downscaling

Fig. 1: A generalized AI architecture diagram for state-of-the-art downscaling foundation models. Note that upsampling is used
for each channel prior to training blocks to reduce downscaling uncertainty.

downscaling at high resolution. For instance, Prithvi achieves
12 km resolution over Europe but is restricted to 50–60 km
globally due to the quadratic scaling of ViT self-attention [20].
ViTs divide spatial data into patches, treating each patch as a
token. As resolution increases, the number of tokens grows,
and self-attention computes pairwise interactions among all
tokens, resulting in quadratic growth in memory and compute
demands. Unlike Natural Language Processing (NLP) models,
which operate on one-dimensional text sequences and scale to
over one million tokens [21], ViTs handle high-dimensional
spatial inputs with complex dependencies across multiple axes,
making long-sequence scaling significantly more computation-
ally intensive. As a result, the longest ViT sequence reported
to date is limited to 188k tokens [22]. This constraint directly
limits the maximum data resolution ViTs can process, as
sequence length scales proportionally with spatial resolution.

Another significant challenge is the uncertainty associ-
ated with multi-variable downscaling, as translating coarse-
resolution data to fine scales is a highly ill-posed inverse prob-
lem—one that becomes even more complex when multiple
climate variables are involved. Unlike super-resolution tasks
in computer vision [23], [24], where Red-Green-Blue channels
represent the same physical quantity, climate variables such as
temperature, humidity, and wind are governed by distinct yet
interrelated physical processes. This heterogeneity increases
the difficulty of learning consistent mappings and exacerbates
uncertainty in predictions. A common mitigation strategy is to
upsample coarse inputs prior to training [18], [19], which can
help reduce uncertainty but significantly increases sequence
length and, in turn, computational cost due to ViT’s quadratic
complexity. Moreover, upsampling introduces artifacts that can
propagate through the model, limiting its effectiveness.

One further limitation of existing downscaling founda-
tion models is their restricted model scale. For example,
Prithvi [18] is constrained to 1.4 billion parameters, primarily
due to the computational difficulty of scaling ViTs for high-
dimensional spatiotemporal data. A major advancement in this
area is the Oak Ridge Base AI foundation model for Earth
System Predictability (ORBIT) [17], which leverages hybrid
sharding and orthogonal parallelisms to scale ViTs to 113
billion parameters—five times larger than previous ViTs and
more than 100× larger than typical climate models. While OR-
BIT represents a major milestone in large-scale Earth system

modeling, it is specifically designed for temporal forecasting
and does not address spatial downscaling. In particular, it does
not resolve the ViT long-sequence bottleneck nor mitigate the
uncertainty associated with inverse downscaling problems.

To address the limitations of current foundation models in
high-resolution downscaling and to extend the ORBIT frame-
work, we introduce ORBIT-2—a scalable and computationally
efficient foundation model for climate downscaling. At its
core is a novel ViT architecture, Residual Slim ViT (Reslim),
specifically designed to bypass the high computational cost
associated with traditional upsampling-based approaches. Un-
like existing models that upsample inputs to mitigate un-
certainty—resulting in quadratic increases in memory and
computation—Reslim operates directly on adaptively com-
pressed spatial inputs, significantly reducing sequence length
while preserving critical information. It preserves accuracy and
reduces uncertainty through a lightweight residual learning
architecture, enabling efficient, low-overhead predictions. Ad-
ditionally, both training and inference are framed as a Bayesian

Estimation problem, incorporating a Markov Random Field
Total Variation prior to further constrain uncertainty and
improve spatial consistency.

Complementing this architecture is the Tile-Wise Sequence

Scaling Algorithm (TILES) that reduces ViT’s self-attention
complexity from quadratic to linear. It works by dividing
images into overlapping tiles, each processed in parallel on
separate Graphical Process Units (GPUs) using localized self-
attention. Each tile’s downscaled outputs are then seamlessly
merged to the full image. This strategy enables efficient and
scalable ViT-based downscaling, making ultra-high-resolution,
global-scale applications computationally feasible.

Leveraging the above innovations, ORBIT-2 sets a new
benchmark for AI-driven climate and weather downscaling
through four key breakthroughs:
• Efficient Reslim Architecture by operating directly on

compressed inputs, achieving over 660⇥ speedup compared
to standard ViTs—without compromising accuracy.

• Longest ViT Sequence Length by scaling ViT sequence
lengths to unprecedented levels—up to 4.2 billion tokens for
a 9.5M parameter model and 671 million tokens for a 10B
model—surpassing the prior state-of-the-art of 188K tokens
by several orders of magnitude [22]. This eliminates the
long-standing sequence bottleneck, enabling global down-
scaling at resolutions as fine as 0.9 Kilometer (km).

Fig. 2: Reslim architecture is split into main and residual paths. No upsampling is used for the main path for ViT training,
leading to reduced computations. Residual path is used to condition prediction for reduced uncertainty.

• Scalable Large Model Training by training models with
up to 10 billion parameters across 32,768 GPUs, achieving
92–98% strong scaling efficiency and sustained throughput
of up to 1.8 ExaFLOPS.

• State-of-the-Art Accuracy achieving R
2 scores of 0.98 for

precipitation and 0.99 for temperature at 7 km resolution
over the continental United States, setting a new standard
in high-fidelity downscaling performance.

III. BACKGROUND & STATE OF THE ART

Figure 1 illustrates the generalized architecture of leading
downscaling foundation models, including Prithvi [18] and
ClimateLearn [19]. The inputs consist of low-resolution data
with multiple atmospheric physical variables, normalized and
bias corrected, and each channel of the architecture reads data
for a distinct variable. To address downscaling inverse prob-
lem uncertainty, current models upsample coarse-resolution
inputs, either via interpolation [19] or convolution [18], before
training. This upsampling process is crucial, as it provides
a higher-resolution baseline for ViT training, mitigating un-
certainty from the inherently ill-posed nature of the multi-
variable downscaling problem, thereby improving accuracy
and uncertainty. Once upsampled, multi-channel inputs are
aggregated into a single-channel representation in feature
space, a step that can be performed using either cross-attention
mechanisms [25] or shallow convolutional layers [18], [19].
This aggregated representation is then trained by the ViT
training blocks, consisting of self-attention and feedforward
sub-layers. Finally, the trained output is projected back from
feature to image space for each individual physical variable.

This approach, however, introduces major challenges. Up-
sampling coarse-resolution input data before training increases
the sequence length, which increases in proportion to the
resolution increase, causing a quadratic increase in memory
and computations due to ViT’s self-attention mechanism.
This severely limits scalability and resolution, leaving the
long-sequence bottleneck unresolved. Prithvi, for example, is
limited to relatively coarse 50-60 km resolution for global
downscaling. To address this, prior work proposed both AI
architecture and High Performance Computing solutions.

Architecture solutions. To mitigate this, architectures like
Swin Transformer alleviate some of the computational burden
by introducing a hierarchical architecture with shifted window
attention [26], [27]. Instead of processing the entire image
at once, Swin Transformer partitions the image into smaller,
non-overlapping local windows, where self-attention is com-
puted independently within each window. To capture global
spatial dependencies, features learned from local windows
are aggregated into global features through an architecture
hierarchy. While this reduces computing complexity, Swin
Transformer has fundamental limitations and its layers of
architecture hierarchy must scale proportionally with higher
resolution, making it unsuitable for foundation models that
needs a single model to generalize across diverse datasets
with varying resolutions. Additionally, Swin Transformer’s
model size grows with the architecture hierarchy, shifting
the computational bottleneck from long-sequence processing
to large-model scaling. Consequently, Swin Transformer can
only scale up to 147K sequence length on standard 3-channel
images [27], far below what is needed for high-resolution,
multi-variable downscaling.

Other sparse attention architectures, such as MaxViT [28],
attempt to mitigate computational cost by sampling self-
attention computations. While this reduces complexity, it
comes at the expense of accuracy degradation when the sam-
pling ratio is too high, and it does not address the fundamental
quadratic complexity long-sequence problem.

Scaling algorithm solutions. Besides architecture innova-
tions, scaling algorithms, such as sequence parallelism [22],
[29], [30], has been proposed as an alternative strategy for
scaling ViT sequence length. It distributes image patch tokens
across GPUs for parallel computing, alleviating memory con-
straints. However, because self-attention requires each token
to interact with all other tokens from every other GPU,
sequence parallelism incurs substantial inter-GPU communi-
cation overhead and limits its scalability. More critically, it
does not resolve the fundamental quadratic complexity, which
causes computational costs to grow rapidly with increased
downscaling resolution. As a result, current ViT sequence
parallelisms are limited to a maximum of 188K token sequence

- Operating directly on compressed inputs
- Condition prediction for reduced uncertainty

lengths [22], which remain insufficient for high-resolution
multi-variable downscaling.

It is also important to note that other commonly used paral-
lelisms—such as Fully Sharded Data Parallelism (FSDP) [31],
Tensor [32], pipeline [33], [34], [35] and hybrid sharded
parallelisms [17] are all designed to scale model sizes, rather
than long sequences of high-resolution and high-dimensional
spatial data. Consequently, none of the existing model paral-
lelisms fundamentally overcome the long-sequence bottleneck
in ViTs required for high-resolution global downscaling and
there is an urgent need to develop computing efficient and
massively parallel architecture and scaling algorithm.

IV. INNOVATION REALIZED

A. Reslim: A Lightweight ViT Architecture for Scalable and

Uncertainty-Aware Downscaling

Unlike existing foundation models that rely on input up-
sampling to establish downscaling baselines, which leads
to increased sequence length and high computational cost,
ORBIT-2 introduces Residual Slim ViT (Reslim), a highly
efficient architecture that significantly reduces training time
and memory usage without compromising accuracy. The key
innovation of Reslim is its ability to operate directly on low-
resolution and adaptively compressed inputs, drastically reduc-
ing sequence length and computational burden. To counteract
the uncertainty typically introduced by bypassing upsampling
prior to ViT training, Reslim incorporates Bayesian estimation
and a residual convolutional learning path, enabling high
accuracy while maintaining efficiency. Its non-hierarchical
design further promotes generalization across datasets with
varying spatial resolutions, making it well-suited for scalable,
foundation-level Earth system modeling.

Main ViT Path. Figure 2 illustrates the Reslim architecture.
After tokenizing each low-resolution physical variable into
feature embeddings, the model proceeds along two architec-
tural paths: the main ViT and residual paths. Crucially, the
main path eliminates input upsampling, avoiding the sequence
length inflation and the quadratically increased computing cost
typical of ViT architectures.

First, the main path uses a cross-attention module to aggre-
gate multi-variable embeddings into a unified representation,
effectively collapsing the variable dimension. A learnable res-
olution embedding encodes the desired output resolution and
is added to the feature embedding, enabling resolution-aware
predictions—an essential capability for modeling resolution-
dependent Earth system behaviors. Next, an optional adaptive
spatial compression module, which will be explained further in
the next paragraph, reduces the sizes of the embeddings before
they are passed through ViT training blocks. When enabled,
this module compresses spatial features; otherwise, it acts as
an identity function. After processing, a decoder comprising
convolutional layers and linear projections reconstructs the
high-resolution output.

Adaptive Spatial Compression. Our objective is not only
to train directly on low-resolution inputs, but also to further
reduce token count and computational cost through compres-
sion. Reslim achieves this via an adaptive spatial compression
technique, inspired by adaptive image patching and mesh

Fig. 3: Comparison with and without adaptive spatial com-
pression. Each yellow grid is an image patch.

refinement methods [36]. After aggregating multi-variable
features (purple block in Fig. 2), the model projects the
embedding back into image space and recursively partitions
it into spatial quadrants using a quad-tree structure. Partition-
ing continues for any quadrant where the estimated feature
density—computed via Canny edge detection—exceeds a pre-
defined threshold, terminating when a minimum patch size is
reached or below predefined threshold.

This approach enables finer-grained learning in feature-rich
regions through smaller patches, and coarse-grained learning
to smoother regions through larger patches, where less detail is
needed. Figure 3 illustrates an example image after variable-
aggregated features are mapped back to image space. Com-
pared to conventional uniform patching (Fig.3(a)), where each
grid represents an image patch token, the adaptive spatial com-
pression method (Fig.3(b)) reduces the number of patch tokens
by 7x in this figure example, significantly decreasing sequence
length and computing cost. After ViT training blocks, the
decompression module reconstructs the high-resolution output
from the compressed embeddings.

Residual Learning. Reslim improves computational effi-
ciency by removing the upsampling step from the main ViT
path and training directly on low-resolution, spatially com-
pressed inputs. This design dramatically shortens sequence
lengths and reduces the quadratic computational cost typically
associated with ViT training. However, bypassing input up-
sampling introduces uncertainty, as conventional foundation
models rely on upsampled inputs to provide a coarse down-
scaling baseline. Reslim addresses this challenge through two
complementary innovations: residual convolutional learning
and a Bayesian estimation objective.

The residual convolutional path reintroduces upsampling
outside the main ViT path, using lightweight convolutional
layers with linear complexity. This path generates a high-
resolution approximation that is added to the ViT output before
loss computation. Such design yields two major benefits:
(1) it avoids the expensive quadratic cost of increasing the
ViT sequence length due to upsampling. The upsampling is
moved to the residual path, where convolutional layers have
linear complexity to input size and thereby upsampling in the
residual path incurs minimal computing cost. (2) it simplifies
the learning task by letting the ViT focus on predicting the
residual difference between the convolutional approximation
and the ground truth, rather than the full downscaling trans-
formation. This soft constraint stabilizes training, enhances
physical plausibility, and significantly reduces downscaling
uncertainty. As a result, Reslim achieves high downscaling
accuracy with significantly reduced computations compared

Fig. 6: (a) TILES sequence scaling algorithm speedup across GPUs, compared to an 8-GPU baseline that does not utilize
tiling. (b) Strong scaling efficiencies up to 4096 nodes (32,768 GPUs) for various model sizes, maintaining a strong scaling
efficiencies of 92-98% at 4096 nodes.

(a) Evaluation metrics for minimum temperature (Kelvin)
Model Size R2 RMSE RMSE �1 > 68% RMSE �2 > 95% RMSE �3 > 99.7% SSIM PSNR

9.5M 0.991 3.812 4.652 9.704 15.497 0.958 29.02
126M 0.999 0.505 0.630 1.025 1.491 0.987 45.96

(b) Evaluation metrics for total precipitation (millimeter/day)
9.5M 0.975 0.146 0.166 0.344 0.449 0.931 29.03
126M 0.979 0.135 0.154 0.296 0.365 0.932 30.20

TABLE IV: Comparison of downscaling accuracy for temperature and precipitation over the U.S. using models with 9.5M and
126M parameters. Results highlight performance gains from increased model capacity.

The seventh column of Table II(a) reports the average
time to downscale each hourly sample. The eighth column
shows the speedup from Reslim relative to the ViT baseline.
Notably, the Reslim architecture avoids expensive upsampling
operations by operating directly on low-resolution inputs,
resulting in significant computational savings. For the smaller
622!156 km task, Reslim achieves a 660× speedup over ViT
at the same number of GPUs while maintaining comparable
accuracy, as measured by PSNR and SSIM. This demonstrates
the effectiveness of Reslim’s residual learning design and
Bayesian training loss in maintaining predictive accuracy
while reducing computational cost. For the larger 112!28
km resolution task, the ViT model fails due to out-of-memory
(OOM) errors. Consequently, a direct speedup comparison is
not available, although Reslim completes the task efficiently
and maintains high accuracy.

Table II(b) explores further speedup gains from adaptive
spatial compression and sequence tiling, compared to the
Reslim baseline (Table II(a), row 5), all using 128 GPUs.
Adaptive compression with a 32× sequence length reduction
yields up to a 7.1× speedup with no loss in PSNR or SSIM.
Further compression yields diminishing returns due to quad-
tree overhead. Tiling provides up to 1.9× with 16 tiles per
sample. Further tiling introduces excessive halo padding over-
head and degrades computing performance. Accuracy remains
stable across all settings.

B. Maximal Sequence Length Scaling

Table III presents sequence length and resolution scaling
performance of various model architectures and strategies,
demonstrating how the combination of spatial compression,

tiling, and the Reslim architecture enables extreme sequence
lengths. We achieve sequence lengths of up to 4.2 billion
tokens (global downscaling resolution of 0.9 km) for a 9.5M
parameter model and up to 671 million tokens (global resolu-
tion 2.3 km) for a 10B parameter model. These results surpass
the state-of-the-art in sequence scaling by more than 22,000×,
compared to state-of-the-art sequence parallelism of 188K
tokens [22], and the Swin Transformer at 147K tokens [27].

All experiments utilize 23 input variables (12 atmospheric,
6 surface, and 5 static) and produce 18 output variables
(excluding static inputs). Using a standard ViT with 9.5M
parameters, the maximum sequence length is limited to 25K
tokens (coarse 156 km global resolution) when using 8 GPUs.
Scaling this ViT model to 10B parameters results in an out-of-
memory (OOM) error, making global downscaling infeasible.

In contrast, Reslim demonstrates significantly better scaling.
With just 8 GPUs, a 9.5M parameter Reslim model scales to
298M tokens at a 3.5 km global resolution. This corresponds
to an output tensor of shape [5760, 4520, 18], assuming a 2×2
image patch size. Increasing the number of GPUs to 32, we
achieve 466M tokens at 2.7 km resolution.

When combining Reslim with both spatial tiling (16 tiles per
sample) and adaptive spatial compression (4x) techniques, sub-
stantial improvements are obtained. With these methods, the
model achieves 1.1B tokens on only 8 GPUs, corresponding
to downscaled output of size [11520, 23040, 18]. This result
is made possible through several key compression techniques:
• Channel aggregation in Reslim (see Fig. 2) reduces the

sequence length by 18× by aggregating channels.
• Spatial tiling divides the sample into 16 tiles, reducing the

sequence length per GPU by 16×.

https://arxiv.org/abs/2505.04802

https://arxiv.org/abs/2505.04802

Distributed Cross-Channel Hierarchical
Aggregation for Foundation Models

Distributed Tokenization

For high number of channels: distribute
tokenization and implement a hierarchical
strategy for channel aggregation.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

tokenization and channel aggregation. D-CHAG removes this
bottleneck.

• By combining D-CHAG with TP, FSDP, and DP, we achieve over
2× sustained throughput compared to TP alone, scaling up
to 1,024 AMD GPUs on the Frontier Supercomputer using real
hyperspectral image datasets.

• We validate D-CHAG on two scienti�c workloads—weather fore-
casting andmasked prediction on plant hyperspectral images—with
less than 1% degradation in solution quality.

2 Background and Motivation
There has been signi�cant recent e�ort to develop foundation mod-
els (FMs) for a variety of scienti�c domains. Due to the inherent com-
plexity of scienti�c data, various fusion techniques are employed
to jointly learn spatio-temporal representations. Additionally, sev-
eral distributed training approaches originally developed for large
language models (LLMs) have been adapted for this purpose.

2.1 The Channel Aggregation Module
One of the most impactful applications of scienti�c foundation mod-
els (FMs) has been in the domain of weather forecasting [3, 15–17].
These architectures typically employ a cross-attention module to
aggregate information across the channel dimension before passing
it to the Vision Transformer (ViT) component, which uses self-
attention to model spatial relationships.

Figure 1: The diagram shows the generic model architecture
used in this work.

A simpli�ed version of these architectures is illustrated in Fig-
ure 1, which also forms the basis of the model used in this work
for development and performance analysis. The inputs are 2D im-
ages with many channels—such as di�erent physical variables in
weather forecasting or di�erent wavelengths in hyperspectral imag-
ing. These images are divided into patches, and 2D convolution
layers are applied to each patch for tokenization. Each 2D patch
from each channel is tokenized independently.

The resulting tokens are then passed to a channel aggregation
module. In our architecture, a single cross-attention layer aggre-
gates the information across channels, reducing them to a single
representation. This aggregated representation is then passed to the
Vision Transformer (ViT) component, where dense self-attention
layers are used in the transformer blocks.

Special tokens are incorporated at various stages of the model.
For example, during channel aggregation, each channel is assigned
a special ID token, which can represent channels from the same or
di�erent modalities. A positional token encodes the spatial location
of each patch in the original image. These are concatenated with a
metadata token—typically representing contextual information like
time and geospatial location in weather forecasting—before being
passed to the ViT. This design allows the model to learn collectively
from all input channels.

There are several reasons why scienti�c foundation models in
climate and related domains use cross-attention for channel fusion
instead of feeding all channels directly into a ViT. Self-attention
has quadratic memory complexity with respect to sequence length.
Aggregating the channels before the ViT moves this complexity
from the self-attention layer (which operates on spatial tokens) to
the cross-attention layer (which operates on channels). For datasets
with a large number of channels, this step is essential for �tting the
model in memory, as self-attention already incurs high memory
costs in the spatial dimension.

From a modeling perspective, the channel aggregation module
also improves learning from diverse physical inputs or heteroge-
neous data sources, such as variables recorded at di�erent resolu-
tions or with di�erent channel counts. It further allows the model
to generalize or �ne-tune on subsets of the original channel di-
mensions while still leveraging the full model capacity, greatly
enhancing its �exibility for real-world deployment.

2.2 Distributed Methods for FMs
Several methods have been developed to scale foundation mod-
els (FMs) across a large number of GPUs, though most of these
methods were not speci�cally designed for vision FMs and are
instead applicable to any transformer architecture. Data-parallel
(DP) is the most commonly used distributed method in deep learn-
ing, employed to distribute the data size. Each DP worker holds
a copy of the entire model but processes di�erent portions of the
data. During the forward pass, there is no communication, while
lightweight communication via AllReduce occurs at the end of the
backward pass. DP scales e�ciently because computation grows
with communication.

The main limitation of the DP method is that model size is con-
strained by available GPU memory, as each GPU holds a copy of
the entire model. The model-sharding method, such as FSDP [22],
addresses this limitation by distributing the gradients, model pa-
rameters, and optimizer states across GPUs. It replaces AllReduce
communication with more frequent AllGather and ReduceScatter
operations. Model-sharding methods are not strictly considered
model-parallel, as their primary goal is still to scale the data size.
However, by removing much of the redundant computation present
in DP, they enable the training of larger models that would oth-
erwise exceed the memory limits of a single GPU. Despite this,
model-sharding methods also face their own size limitations, as
demonstrated by [17], because at some point, the entire model
parameters must �t into the memory of a single GPU.

Model-parallel methods are usually less architecture-agnostic
compared to model-sharding and data-parallel methods. For exam-
ple, sequence-parallelism (SP) is particularly relevant to transformer

2

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Distributed Cross-Channel Hierarchical
Aggregation for Foundation Models

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

(as described in Section 4.3), versus D-CHAG combined with TP,
using a �xed number of GPUs.

Figure 9: The plots show, for a 1.7B-parameter model, the
performance gains per GPU over the TP-only baseline across
various con�gurations of the partial-channel aggregation
module, as de�ned in Section 3.3. Tree0 represents a sin-
gle layer in the partial-channel aggregation module, while
Tree2 represents two layers, and so on. The su�xes -C and
-L indicate the type of layers used: in -C, all layers are cross-
attention, whereas in -L, all layers are linear.

Figure 9 shows the measured performance of D-CHAG across
various con�gurations of the partial-channel aggregation module,
as de�ned in Section 3.3 and illustrated in Figure 4. For example,
Tree2 for 512-channel images on two GPUs means that each GPU
used two channel aggregation layers, with a maximum of 128 input
channels per layer, while Tree8 used eight aggregation layers per
GPU, with a maximum of 32 channels each. In all experiments
presented in this work, the �nal channel aggregation layer—shared
across TP ranks—is implemented as a cross-attention layer. The
layers within the partial-channel aggregation module, however,
were tested using both linear and cross-attention con�gurations.

As seen from the measured performance, using a single cross-
attention layer results in slightly worse performance than the base-
line for 512 channels, but yields a 60% improvement for 1024 chan-
nels. As we deepen the hierarchical structure, we observe bene�ts
even with 512-channel data, while the performance remains mostly
constant for 1024-channel data.

On the other hand, when using linear layers, we see perfor-
mance improvements even with a shallow hierarchical approach
for both 512- and 1024-channel images. In fact, the best perfor-
mance is achieved with D-CHAViT-L-Tree0, which includes just
one channel aggregation layer. Increasing the number of channel
aggregation layers adds model parameters, introducing memory
overhead. While additional layers appear bene�cial for the 512-
channel case, we �nd that using just one linear layer outperforms
deeper con�gurations for both channel sizes.

For the remainder of the paper, we use the Tree0 con�guration.
We refer to the model as D-CHAG-L when all layers in the partial
aggregation module (see Fig. 4) are linear, and as D-CHAG-C when
cross-attention layers are used. Finally, in all experiments presented
in this work, the �nal layer of the channel aggregation module has
been implemented as a cross-attention layer.

5 Evaluation
In this section, we evaluate the D-CHAG method on two applica-
tions: weather forecasting and self-supervised mask prediction on
plant hyperspectral images.

As mentioned earlier, although D-CHAG does not alter the core
architecture of the FM model, incorporating the partial channel ag-
gregation module results in a slightly larger number of parameters.
The best-performing D-CHAG con�guration uses linear layers to
approximate the operations within the partial channel aggregation
module, while retaining cross-attention for the �nal aggregation.
The impact of these changes should be minimal, as they only intro-
duce additional learnable parameters along the channel dimension.
With appropriately chosen hyperparameters, we expect no degra-
dation in performance. For simplicity, we tuned the hyperparame-
ters for the baseline model only and kept them unchanged when
applying the D-CHAG method, though further tuning may yield
improved results.

For evaluation, we used single-GPU runs as the baseline. TP
was used as our performance baseline, and as mentioned earlier,
our results should be independent of the speci�c TP version, since
TP and D-CHAViT are complementary. Therefore, we expect the
measured performance gains to remain consistent across versions.
When evaluating architectural changes, however, we focus on con-
vergence behavior, which could be in�uenced by TP. To ensure a
fair comparison, we treat single-GPU runs as a more reliable base-
line. This approach allows us to simultaneously demonstrate the
e�ects of the D-CHAG method and verify the overall correctness
of the implementation, including the TP component.

5.1 Mask Prediction on Hyperspectral Images

Figure 10: A schematic of the full architecture used for self-
supervised mask prediction on hyperspectral plant images.

Figure 10 shows the deep learning architecture used for self-
supervised mask prediction of hyperspectral plant images. The
model is based on theMAE architecture [10], where tokens—representing
image patches in this case—are masked, and the objective is to pre-
dict the missing content. This is a self-supervised approach in which
the model learns the data distribution of the images.

No pre-trained weights were used for training, and a dataset of
visible-to-near-infrared (VNIR) hyperspectral images of Poplar—an
important biomass feedstock for bioenergy research—was used. The
dataset was collected by the Advanced Plant Phenotyping Labora-
tory (APPL) at Oak Ridge National Laboratory [13] and consists of
494 hyperspectral images, each with 500 spectral channels spanning
wavelengths from 400 nm to 900 nm. This subset of 494 images was

7

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Figure 15: The plots show the memory usage per GPU and
the measured TFLOPs/sec/Node for di�erent combinations
betweenD-CHAG, TP, FSDP andDP for a 7B parametermodel
using images with 500 channels.

optimal con�guration by adding FSDP and DP for a �xed model size
and compute budget. Our goal is to demonstrate better throughput
using real hyperspectral images—the same ones used in the evalu-
ation section—with 500 channels. We will choose a 7B parameter
model and two Frontier nodes, which, as shown in Figure 13, is
the minimum number of GPUs required to �t 512 channels for this
model size using TP alone.

Figure 15 shows the memory usage per GPU and the measured
TFLOPs/sec per Frontier node for images with 500 channels. With
TP alone, we can only �t the 7B parameter model on two Frontier
nodes. However, by using the D-CHAG method, we can �t the
model on a single Frontier node, even with just two GPUs. As seen
in the bottom plot of Figure 15, by reducing the model’s memory
requirements, we can achieve a higher number of TFLOPs/sec with
the same number of resources by increasing the global batch size
of the application.

6.3 Performance as Batch-Size Scales
After determining the optimal con�gurations for both the Hybrid-D-
CHAG method (i.e., D-CHAG, TP, and FSDP) and the baseline (i.e.,
TP and FSDP) using a 7B parameter model, we incorporated DP into
both setups. This approach minimizes communication overhead as
we scale the batch size. For the baseline, DP is applied in groups of
two nodes, whereas the Hybrid-D-CHAG method allows for data
parallelism across nodes.

Figure 16: Measured TFLOPs/sec for the full model for a
�xed number of GPUs using the optimal con�gurations for
both methods, as determined in Figure 15. A 7B parameter
model was used for these runs, along with real hyperspectral
images from APPL [13]. For the baseline runs, TP, FSDP, and
DP were used, while the D-CHAG method was combined
with TP, FSDP, and DP (referred to as Hybrid D-CHAG). The
percentage values in the red plot indicate the performance
gains over the baseline.

Figure 16 shows the total TFLOPs/sec achieved by the Hybrid-D-
CHAG method compared to the baseline. As illustrated, the Hybrid-
D-CHAG setup achievesmore than double the sustained throughput
when scaling batch size. Two main bene�ts contribute to increased
FLOPs from the added memory e�ciency: �rst, the ability to lever-
age data parallelism with fewer resources; and second, the earlier
DP can be applied, the better scalability we achieve—since in DP,
compute scales with communication.

Additionally, the Hybrid-D-CHAG approach pushes most of the
heavy communication within the node, taking full advantage of the
faster intra-node communication bandwidth. In contrast, the base-
line must perform multiple AllGather and ReduceScatter operations
across nodes, while D-CHAViT only requires a single AllReduce
across nodes at the end of the backward pass.

7 Conclusion
In this paper, we propose a novel distributed approach for training
foundation models on multi-channel datasets that signi�cantly
reduces memory usage and enhances computational performance.
The D-CHAG method is independent of the ViT architecture or
the model-parallel strategy used and enables training of larger
models on datasets with a high number of channels by e�ciently
distributing the tokenization and channel aggregation layers. For
datasets with a large number of channels that can already leverage
existing model-parallel methods, we observe up to 75% memory
usage reduction when combined with D-CHAG.

10

70

ViT Challenges

Long sequence (when ingesting all image elements at high res)

Shifting bottleneck (elements outside the Transformer encoder)

Tokenization (managing temporal dimension)

Different parallelism in training (vs. text Transformer)

Multi-modality

1

2

3

4

5

Genome/Transcriptome

Other Phenotypes

Images

Omics lipidome

Neural Activities

Proteins

71

Information
Retrieval APIs

(or Code)

Information
Retrieval APIs

(or Code)

Information
Retrieval APIs

(or Code)

Information
Retrieval APIs

(or Code)

Information
Retrieval APIs

(or Code)

Information
Retrieval APIs

(or Code)

New Object

Infinia Event
Trigger

Call NIM
new_object(object1)

Get “object1”

iDB

Insert “object1
embeddings”

End User
Query..

1

2

3

4

5

Bucket

Multi-agent Approach for
Multi-modality

72

Real-world Problem Covering Almost all the
Challenges Presented so Far

73

Tr
ad

iti
on

al
 In

sp
ec

tio
n

High-rise Vehicle

Unmanned
Aerial Vehicle

Geotechnical
Inspection

Road Inspection

Infrared Stress
Measurement

Crack Detection

H
um

an
 M

an
ua

l

M
ec

ha
ni

ca
l E

ng
ne

er
in

g

C
am

er
a/

La
se

r I
m

ag
in

g

Infrastructure Inspection Paradigm Shift

Image Acquisition

Experimental
Facility

Computational
Facility

Reconstrution
and Segmentation

Computational
Facility

AI Model Training

High-resolution XCT Imaging + 3D image AI Analytics

Transformer-based Foundation Model

Paradigm Shift in Infrastructure Inspection Technology

High performance
Imaging + AI +

analytics

- Replace traditional engineering
- Full fusion of imaging and AI

https://tinyurl.com/yvddayb3

https://tinyurl.com/yvddayb3

74

Total Road Length in Japan is ca. 1.21 Million KMs

1

Road Lengths by Road Type
The total road length in Japan is ca. 1.21 million km. Municipal
roads account for 80% of total length.

【Road types and their percentages in Japan】
ca. 8000km Expressway (ca. 1%)

ca. 20,000km National Highway under jurisdiction of
MLIT (ca. 2%)

ca. 30,000km National Highway under jurisdiction of
Pref. (ca. 3%)

ca. 130,000km Prefectural Road (ca. 11%)

ca. 1.02 million km Municipal Roads (ca. 84%)

Total ca. 1.21 million km

* Source: MLIT, Japan https://www.mlit.go.jp/road/road_e/pdf/RoadMaintenance.pdf

Total
130,000km of

highway to
maintain

https://www.mlit.go.jp/road/road_e/pdf/RoadMaintenance.pdf

淀川左岸線（2期）建設中

75

Highway Network West Japan (Osaka, Kyoto, Kobe)

* Source: Sakai @Hanshin Highway

• Mechanical inspection
• Time: 10s of years
• Cost: $ Billions

• Camera/laser Imaging technology
• Good for fast screening of visible surface cracks, depressions etc
• Not a reliable technology for understanding sub-surface conditions

76

How to Inspect Roads for Maintenance?

Fatigue test: Accelerated Crack Simulation

77

Mechanical Inspection

“Actual-scale test track” by Taisei-Rotech

78

Vehicles Extracting 100s Samples per Day

• Core samples extraction machines mounted on vehicles

+

79

Collecting Samples

• Extract cylindrical samples from core of asphalt layers

* Example: if one sample every 10KM, then 130,000 / 10 = 13,000 samples

80

Scan Samples with X-ray

• Scan (2D projections) at RIKEN Spring-8 Synchrotron

The synchrotron radiation facility RIKEN SPring-8

81

High Resolution 3D Image Reconstruction

• High-performance high-resolution X-ray CT image reconstruction

82

Storage

Transfer

Projections

（100Gbps）

❶ Collect Specimens

Deliver

Specimens

❷ Scan Specimens

Normal XCT Scan

❸ §C - Reconstruction Fuse AI Segmentation ❹ Analyze

Load Store Load Store

No

Needed§
4
 -

 R
e
c
o
n
s
tr

u
c
ti
o
n

§
5
 -

 A
I
S

e
g
m

e
n
ta

ti
o
n

§A - H3 Image Reconstruction

§B - Train Foundation Model (offline)

Storage Storage

Transfer

Reconstructed

Volumes Simulated LabelSimulated DataSimulating

Storage

1 2 3

1 2 3

1 2 3

Example:

 3D Stone Distribution

2

3

1

Storage

2 22 2

3 33 3

1 11 1

Row

P
ro

je
c
ti
o
n

Slice

3-Dimensional

Parallel

§B & C - AI Segmentation Inference (online)

SAP Transfer

after SAP ViT

Load Store

Still distributed and in-place memory

SAP
Inverse

: 40 years and over

: 30-39 years

: 20-29 years

: 10-19 years

: 9 years and under

43.3%

19.2%

26.5%

5.6%
5.4%

Total Length:

258.1 km

Osaka Tokyo

Transfer

Trained Weights

rotate

180°

Offset XCT Scan

rotate

360°

Further Expert Analyze

Group and Cyclic Mapping

Detailed in Detailed in

Storage

Store

Bitmap Mask

MPI_Alltoallv

ViT

ViT

ViT
MPI_Alltoallv

Inverse

Transfer

Step 1: Label-Free Self-Supervised Pre-Training Step 2: Fine-Tuning with Simulated Data and Labels

Real data distribution

X-ray source setting

Attenuation coefficients

MAE Masked Inpaint

SAP-ViT

0

10

1 2 3

4 5 6 7

8 9 11

1 11 1

2 22 2

3 33 3

3 33 3

1 11 1

2 22 2

2 22 2

3 33 3

1 11 1

MPI_Reduce_scatter_blockMPI Rank

3

7

1110

2

6

1

5

0

4

98

11

10

9

8

11

10

9

8

11

10

9

8

11

10

9

8

x

QuadTree

Learning

XCT Image

Representations

Learning

Task-Specific

Representations

Paradigm Shift in Infrastructure Inspection Technology

83

H3: High-throughput, High-perf., High-resolution CT
TABLE I: Parameters used in ROVAI. The upper section lists
acquisition-specific parameters, the lower section defines paralleliza-
tion settings.

Symbol Description
Nspecimen Number of specimens

N
i
p Number of projection angles in i

th specimen
N

i
c Detector channels of the 2D projection in i

th specimen
N

i
r Detector rows of the 2D projection in i

th specimen
N

i
x, N

i
y, N

i
z Dimensions of 3D volume in the X, Y, and Z in i

th volume
Prow Number of row parallel MPI ranks
Pproj Number of projection parallel MPI ranks
Pslice Number of slice parallel MPI ranks
G Set of group row partitions

Rows
(Nr)

Projections (Np)

Input :

Specimen [Np][Nr][Nc]

 Output :

Volume [Nz][Ny][Nx]

Projection Partition

Row Partition

Slice Partition

Nz

Ny

Nx3-Dimensional

Channels
(Nc)

MPI
Node

Projection
Parallel
(Pproj)

Slice Parallel (Pslice)
Row Parallel

(Prow)

Fig. 3: Illustration of how a single specimen image is reconstructed
using 3-dimensional partitioning and parallelism.

of GPUs. The foundation model includes key innovations,
namely a simulator for generating masks and symmetric adap-
tive patching. Next, the model was fine-tuned, and the model
weights were moved to the Fugaku supercomputer. Finally, we
conducted full-scale Fugaku runs to demonstrate the ability
to simultaneously reconstruct dozens of specimens followed
by AI inference in a single fused end-to-end pipeline, from
loading the scans from the PFS I/O to writing back the 3D
segmented images to storage.

V. INNOVATION REALIZED

A. H3: High-throughput, High-perf., High-res. Imaging
ROVAI leverages the massive parallelism of the Fugaku

supercomputer to process high-resolution X-ray images ac-
quired by XCT scanners at the Spring-8 synchrotron facility.
This section outlines the design of a distributed reconstruction
pipeline that efficiently processes multiple volumes in parallel,
balancing computation, communication, and I/O to minimize
overall end-to-end runtime. Table I summarizes the key pa-
rameters used in configuring ROVAI.

a) 3D Partitioning for Distributed Computing. To enable
fine-grained parallelism, Fig. 5 introduces a three-dimensional
partitioning and parallelization strategy we use in our frame-
work. As shown in Fig. 3, the image reconstruction, transform-
ing projections to volume data, is divided along (input) scan-
rows, (input) projections, and (output) 2D slices from the 3D
volume, with each dimension supporting parallel computation.

Scan-rows Partition. In parallel beam XCT, each detector
row directly maps to a distinct volume slice. Because the
projections captured by each row are independent, recon-
struction can be performed separately for each slice without
cross-dependencies. As illustrated in Fig. 3, we partition the
data in the Nr dimension to enable distributed computation.
This makes the row dimension naturally partitionable, allow-
ing straightforward parallelization across both the specimen
and volume. Projections Partition. Projections, composed of a

0 1 2

X-ray

rotate 180 degrees

X-ray

rotate 360 degrees

(a) Normal XCT Scan

(b) Offset XCT Scan (using the same X-ray source to detect larger objects)

Rank

Workload

Rank
Workload

0 1 2

Fig. 4: Normal scan versus offset scan XCT. Offset scan is favorable
for acquisition efficiency. Offset scan yields a more imbalanced
workload in comparison to normal scan.

series of scan-rows, are acquired at evenly spaced rotational
angles. As illustrated in Fig. 3, we partition the data along
the Np dimension to enable parallel computation. Each 2D
projection contributes to updating the entire volume. The
final reconstructed volume is obtained by summing multiple
partial volumes, each generated from a subset of projections.
Therefore, after projection partitioning and parallel processing,
a reduction operation MPI Reduce is required to generate
the final volume. Slices Partition. Since each voxel in the
output volume is computed independently, thus allowing for
partitioning of 2D slices from the 3D volume. Since adjacent
voxels exhibit improved data locality in both projections and
volumes during distributed FBP computation, we partition in
both the Nx and Ny dimensions to enhance data locality
and achieve fine-grained parallelism. The three dimensions of
parallelism work together to optimize both computation and
communication in image reconstruction. In Section V-A-b, we
will address the load imbalance introduced by parallelism.

b) Addressing Load Imbalance in XCT Offset Scans.
There are two main causes of load imbalance: First, the
increase in problem complexity leads to load imbalance. Com-
pared with previous image reconstruction work that focused
only on a single specimen, our framework handles the simul-
taneous reconstruction of Nspecimen specimens with various
projections(Np), detector rows(Nr), detector channels(Nc),
and both normal scan CT and offset scan CT. Second, the
specimens often use offset scanning where the sample is
shifted laterally (offset) to extend the field of view (FoV)
beyond the detector’s physical size, hence enabling the imag-
ing of large objects that exceed the detector’s native FoV.
The downside is that offset scan yields a more imbalanced
workload in comparison to normal scan. As shown in Fig. 4,
using projection parallel and slice parallel simultaneously will

4

11

3

1

2

2

3

1

2

3

1

2

3

1

2

3

1

3

1

2

1

2

3

3

1

2

MPI_Reduce_scatter (Pproj)

Normal Scan CT

Offset Scan CT Group Row Partitions

3

1

2

1

2

3

1

2

3

1

2

3

1 2 3

1 2 3

1 2 3

Row

P
ro

je
c
ti

o
n

Slice

3-Dimensional

Parallel

0

10

1 2 3

4 5 6 7

8 9 11

MPI_Bcast (Pslice)

0 21 3

F
ro

m
 P

F
S

1

4 62 75

83 9

5 61 74

92 8

1 23 30

1

0 12 23

4 53

Load

1110

1110

7

108 9

6

Cyclic Mapping to MPI Ranks

T
o
 L

L
IO

 (
n
o
d
e
 e

x
c
lu

s
iv

e
)

MPI Rank MPI Group-projection (Pproj)MPI Group-slice (Pslice)

3

7

11

3

7

11
1+2+3

1+2+3

1+2+3

2

3

1

3

1

2

1

3

3

Fig. 5: Proposed H3 imaging algorithm in ROVAI: Group row partitions and cyclic mapping to MPI ranks.

lead to load imbalance. The yellow, blue, and red regions
represent different slice partitions, and the rank numbers at the
top indicate different projection partitions. The colored areas
illustrate memory access footprints, which vary in proportion
to the corresponding computational workload. The heat map
on the upper right shows the imbalanced workload on different
MPI ranks under the combined effect of the two types of
parallelism.

Group Row Partitions and Cyclic Mapping to MPI Ranks.
To address load imbalance, we propose a group-and-cycle
mapping strategy (Fig. 5). First, row partitions across
specimens (including normal and offset scans) are grouped
to balance workloads across row-parallel MPI ranks and
reduce synchronization overhead from MPI Barrier calls.
Second, these grouped row, projection, and slice partitions
are cyclically mapped to MPI ranks—ensuring ranks
rotate through diverse workloads, avoiding repetition and
achieving balanced computation regardless of partition
counts. Third, the method improves communication efficiency
by shifting from many-to-one MPI Reduce to all-to-all
MPI Reduce scatter block, eliminating bottlenecks and
evenly distributing workloads.

c) Optimized Pipeline between Group Row Partitions.
Building on the group and cyclic mapping optimiza-

tion (Section V-A-b), computation, communication, and I/O
times across group row partitions become balanced. To fur-
ther boost throughput, the reconstruction process is stream-
lined into four stages: 1) Loading Projections (Tload): Data
is loaded once from the PFS to LLIO (node-local storage),
with group row partitions evenly distributed across Pslice
nodes. 2) FBP Computation (Tcomp): Each node retrieves pro-
jections from LLIO, broadcasts them, and performs Beer-
Lambert pre-processing [23], Gaussian blur, filtering [22],
and back-projection computation O(Np ·Nx ·Ny ·Nz), scal-
ing across Pproj and Pslice. 3) Segmented Reduction (Tcomm):
Back-projection results from all Pproj nodes are reduced us-
ing segmented MPI_Reduce_scatter_block, improv-
ing efficiency over standard many-to-one communication.
4) Volume Storage (Tstore): Output slices are normalized based
on CT number (HU) range [24], quantized to uint16_t, and
written back to storage.

As shown in Fig. 9b, overlapping these stages across group
row partitions ensures that the overall runtime is determined

by the slowest stage, maximizing throughput.
In summary, we achieved high-throughput, high-

performance, high-resolution image reconstruction in
ROVAI framework by using group and cyclic mapping
of row partitions, establishing an efficient pipeline for the
simultaneous reconstruction of different specimens, including
a mix of normal and offset scans. These strategies minimized
the bottlenecks, optimized for load balancing, and finally
achieved both high-performance and high-throughput image
reconstruction (as will be shown in the evaluation section).

B. Foundation Model for High-resolution 3D Segmentation

The core requirement from an AI vision model that can en-
able the analytics required for robust inspection of road infras-
tructure is high-quality 3D segmentation. Building downstream
functionalities become straightforward, once high-quality seg-
mentation exists. High-quality segmentation is a challenging
problem, for three reasons. First, high quality datasets are
necessary. Second, labeling large datasets of high-resolution
3D volumes is unfeasible. Third, the memory requirements
for high-resolution segmentation are notoriously restrictive. In
this section we discuss the design and training process of the
vision transformer foundation model we developed for this
project. Note that the model, that we openly release, can be
used stand-alone for segmentation of high-resolution concrete,
asphalt, sand etc 3D images.

a) Generating Labeled Data by Simulating Reconstruc-
tion. To generate training data for the model, we simulated
high-resolution synchrotron CT data of concrete by devel-
oping a scalable pipeline that transforms large-scale virtual
microstructures into realistic XCT scan volumes. Starting from
volumetric data generated using PyCMG [25] at a coarse
resolution of 150 µm, the pipeline extracts multiple sub-
volumes and resamples them to a resolution of 12.02 µm,
matching the voxel size of real synchrotron CT scans. Each
resampled sub-volume is randomly cropped along the z-axis
to a depth between 50 and 120 slices, resulting in 3D volumes
of approximately 8, 192⇥ 8, 192 pixels per slice. These high-
resolution volumes are then passed through an XCT forward
model using the ASTRA toolbox [26] with an FBP reconstruc-
tion algorithm, simulating realistic XCT projections and recon-
structions. Material-specific attenuation coefficients—derived
from regions of interest in real synchrotron scans of pores,

5

H3

End-to-end pipeline to reconstruct
10s of 16K resolution 3D images in

one go (full-system scale)

84

End-to-end Image Reconstruction

Cores were collected from road surfaces used for 20 to 30 years on the Hanshin Expressway.

Floor slab (concrete) Pavement (asphalt)

〜
70
m
m

* Courtesy of Kentaro Uesugi (RIKEN Spring-8)

High-resolution 4,1923 Asphalt Core generated on Fugaku in 12 seconds (12,288 nodes: ~7% Fugaku)

85

Training a Foundation Model

ViT Model with SAP

Step 1: Label-Free Self-Supervised Pre-Training

Simulated LabelSimulated DataSimulatingMAE

Step 2: Fine-Tuning with Simulated Data and Labels

Masked Data

Real data distribution

X-ray source setting

Attenuation coefficients

QuadTree

Reconstructed Volumes
(Section 4)

Inpaint

With QuadTree

SAP
Inverse

Microstructure Label Map Paired Simulated CT Slice

a) b)c) d)

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79%.

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.

Stone Mask Connected Component Analysis

Pixels in Component

Distribution

3D Stone DistributionOriginal Volume Slice Separating Large Stones

Stacking Slices

lo
g

(A
re

a
)

Fig. 12: Example of ROVAI’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G| = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset Model Patch Size GPU (hours) Epochs Dice (%)

780 unique volumes
w/ simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our Model 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM, convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38%).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98%). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

Several Challenges
Sequence length, tokenization, shifting
bottleneck, and NO LABELED DATA

86

Results

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79%.

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.

Stone Mask Connected Component Analysis

Pixels in Component

Distribution

3D Stone DistributionOriginal Volume Slice Separating Large Stones

Stacking Slices

lo
g

(A
re

a
)

Fig. 12: Example of ROVAI’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G| = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset Model Patch Size GPU (hours) Epochs Dice (%)

780 unique volumes
w/ simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our Model 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM, convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38%).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98%). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

Ground Truth.
Dice Score: 100%

Our model.
Dice Score: 94.79%.

SAM 2 [8].
Dice Score: 85.98%

UNet [9].
Dice Score: 58.38%

(a) Segmentation prediction on simulated samples

Real Sample Slice. Zero-shot Prediction
(b) Segmentation on real sample with zero-shot inference. The pixel-level microstruc-
ture, e.g. void area, can be precisely extracted, which is hard for human experts.

Fig. 11: (a) Segmentation accuracy on SoTA model, SAM 2 [8], and our model (which uses our SAP scheme instead of the original
convolution decoder). At the same GPU budget used for training, our model can go down to patch size of 2x2 (vs. 128x128 at best for SAM
2 before going OOM), for 8K resolution. As a result, our model can extract and express mask details better than SAM 2, with a big gap
in accuracy favoring our model as the resolution gets higher. (b) Segmentation result on the original sample with zero-shot prediction using
the model we trained on the simulated data and masks.

Stone Mask Connected Component Analysis

Pixels in Component

Distribution

3D Stone DistributionOriginal Volume Slice Separating Large Stones

Stacking Slices

lo
g

(
A

r
e
a
)

Fig. 12: Example of ROVAI’s AI downstream task: connected com-
ponent analysis [32], separation, and mapping the stones distribution.

Overall, the end-to-end pipeline for FBP Imaging achieves
an average speedup of 1.72⇥ (up to 2.44⇥) across all tested
combinations of the three parallelization configurations. The
optimal result is obtained with the configuration Prow = 16,
Pproj = 48, Pslice = 16, and |G| = 8, which reconstructs
five specimens in 316 seconds, while achieving 37.1% (28
PFLOPS) of the single precision peak performance on 12,288
nodes. Fig. 10 confirms the effectiveness of the proposed
optimization strategies outlined in section V-A.

B. AI Analytics

Segmentation Accuracy of Foundation model. Table II
compares the segmentation accuracy (Dice score [34], ranging
from 0 to 1; higher is better) of our model with representative

TABLE II: Segmentation of simulated XCT dataset for multi-classes
segmentation at the fine-tuning stage.

Datset Model Patch Size GPU (hours) Epochs Dice (%)

780 unique volumes
w/ simulated masks

(8,192⇥8,192⇥(50⇠120))

U-Net [9] N/A 1,280 500 58.38
Swin UNETR [10] 2562 5,120 1,000 63.74
SAM 2[8] 1282 5,120 1,000 85.98
Our Model 22 5,120 1,000 94.79

convolution-based and ViT-based models. Training at 8K2

resolution often leads to out-of-memory (OOM) issues due to
the large input and output sizes. To prevent OOM, convolution-
based models require a reduction in both depth and chan-
nel width, which significantly degrades accuracy (58.38%).
ViT-based models such as SAM 2 and Swin UNTER must
adopt large patch sizes (e.g. 128 or 256) to manage mem-
ory, resulting in reduced performance (85.98%). Our model
overcomes these limitations using the SAP scheme, which
dynamically segments the image while supporting a minimal
patch size of 2. This approach alleviates the sequence length
constraint in ViT models and achieves a high Dice score of
94.79% at full 8K2 resolution. Notably, as accuracy increases,
further improvement becomes more challenging, since even
small gains require precise refinements along segmentation
boundaries [35]. The 9% improvement over existing methods
represents a substantial advancement, positioning our model in
a qualitatively different class and enabling more sophisticated
downstream analytics.

Qualitative results. To further highlight the strength of our
model, we present the predicted image quality in Fig. 11a.
Although the UNet model captures the overall structure rea-
sonably well compared to the ground truth, its limited depth

9

TABLE III: Benefits of new inspection technology over traditional
methods. T , XCT , and XCT +AI represent traditional inspection,
XCT imaging only, and XCT imaging + AI analysis, respectively.

Road Inspection Analysis Items T XCT XCT+AI
Detect surface degradation X X X
Visualize sub-surface conditions X X
Measure road shear strain angle X X
Measure density of concrete and aggregate X X
Measure the distribution of voids X
Measure the state of material around voids X
Measure volume ratio of aggregate, stone, etc. X

indicate arithmetic intensity for XCT image reconstruction, AI
inference, and our fused ROVAI pipeline. As detailed in Sec-
tion V-C-a, ROVAI’s optimizations shift its intensity toward
the compute-I/O balance point, improving efficiency. ROVAI
achieves 60 GB/s throughput (40% of peak I/O bandwidth).

VIII. IMPLICATIONS

HPC and AI Impact. Using full Fugaku (152,064 nodes)
and SPring-8 imaging, we reconstructed 46 specimens at
8,192 resolution and ran AI segmentation in 2,762 seconds,
averaging 60 seconds per specimen. For HPC, the H

3 imaging
solution enables full-system-scale 3D reconstruction, allowing
simultaneous processing of large batches of high-res XCT data
for scientific analytics, and not just one image at a time as
commonly done. For AI, we are the first to show that vision
transformers can achieve accurate zero-shot predictions on real
data when trained on simulated microstructures. Combined
with adaptive patching, this demonstrates that models can learn
effectively from microstructural and spatial hierarchies, offer-
ing a scalable alternative to costly pixel-level self-attention.

Real-world Impact on Highway Inspection. ROVAI is
built for ongoing use on newly collected specimens gathered
regularly. Table III lists the key analytics objectives it supports,
with the Evaluation section showcasing downstream tasks that
align with them. For instance, size measurement and clustering
in Fig. 12 help assess material conditions around voids and
estimate volume ratios of aggregates and stones. Additional
analytics results and ablation studies will be provided in the
supplementary material.
ROVAI’s Outlook. Infrastructure maintenance extends be-

yond pavements to bridges, concrete structures, and soil me-
chanics, all of which can benefit from ROVAI’s advanced
analytics, especially when guided by expert-selected down-
stream tasks. ROVAI enables a paradigm shift in inspection,
drastically reducing cost and time. It supports early crack
detection, crack progression tracking, and particle size analysis
for wear detection. Looking ahead, AI-driven analytics pow-
ered by ROVAI could enable precise deterioration forecasting
by modeling long-term environmental effects, enabling more
proactive, cost-effective maintenance.

REFERENCES

[1] E. L. Glaeser et al., “Economic perspectives on infrastructure invest-
ment,” Rebuilding the Post-Pandemic Economy, 2021.

[2] M. Barriera et al., “Assessing and predicting fatigue damage of road
pavement using embedded sensors and deflection measurements: a full
scale test,” Road Materials and Pavement Design, 2021.

[3] H. Yao et al., “Advanced industrial informatics towards smart, safe and
sustainable roads: A state of the art,” Journal of traffic and transportation
engineering, 2023.

[4] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv, 2020.

[5] F. Kim et al., “Investigation of pore structure in cobalt chrome addi-
tively manufactured parts using x-ray computed tomography and three-
dimensional image analysis,” Additive Manufacturing, 2017.

[6] Z. Zhao et al., “3d-reconstruction and characterization of the pore
microstructure within the asphalt fam using the x-ray micro-computed
tomography,” Construction and Building Materials, 2021.

[7] J. Taheri-Shakib et al., “A review of microstructure characterization
of asphalt mixtures using computed tomography imaging: Prospects
for properties and phase determination,” Construction and Building
Materials, 2023.

[8] N. Ravi et al., “Sam 2: Segment anything in images and videos,” 2024.
[9] F. Isensee et al., “nnu-net: a self-configuring method for deep learning-

based biomedical image segmentation,” Nature methods, 2021.
[10] H. Cao et al., “Swin-unet: Unet-like pure transformer for medical image

segmentation,” in European conference on computer vision, 2022.
[11] J. Chen et al., “Transunet: Transformers make strong encoders for

medical image segmentation,” CoRR, 2021.
[12] E. Zhang et al., “Adaptive patching for high-resolution image segmen-

tation with transformers,” in SC24. IEEE, 2024.
[13] K. R. Dudipala et al., “Halide perovskites and their derivatives for

efficient, high-resolution direct radiation detection: design strategies and
applications,” Advanced Materials, 2024.

[14] T. Bicer et al., “Trace: a high-throughput tomographic reconstruction
engine for large-scale datasets,” Advanced structural and chemical
imaging, 2017.

[15] X. Wang et al., “Massively parallel 3d image reconstruction,” in SC17,
2017.

[16] M. Hidayetoğlu et al., “Memxct: Memory-centric x-ray ct reconstruction
with massive parallelization,” in SC19, 2019.

[17] M. Hidayetoğlu et al., “Petascale xct: 3d image reconstruction with
hierarchical communications on multi-gpu nodes,” in SC20. IEEE,
2020.

[18] P. Chen et al., “Ifdk: A scalable framework for instant high-resolution
image reconstruction,” in SC19, 2019.

[19] P. Chen et al., “Scalable fbp decomposition for cone-beam ct recon-
struction,” in SC21, 2021.

[20] K. He et al., “Masked autoencoders are scalable vision learners,” in
CVPR22, 2022.

[21] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in CVPR21, 2021.

[22] A. C. Kak et al., Principles of computerized tomographic imaging.
SIAM, 2001.

[23] F. C. Strong, “Theoretical basis of bouguer-beer law of radiation
absorption,” Analytical Chemistry, 1952.

[24] L. W. Goldman, “Principles of ct and ct technology,” Journal of nuclear
medicine technology, 2007.

[25] F. CODA, “Pycmg: ppen source software package for generating virtual
concrete mesostructures.” 2025.

[26] W. Van Aarle et al., “Fast and flexible x-ray tomography using the astra
toolbox,” 2016.

[27] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on pattern analysis and machine intelligence, 1986.

[28] H. Samet, “The quadtree and related hierarchical data structures,” ACM
Computing Surveys (CSUR), 1984.

[29] J. Ayres et al., “Sequential pattern mining using a bitmap representation,”
in ACM SIGKDD, 2002.

[30] RIKEN, “Performance of file system,” https://www.fugaku.r-ccs.riken.
jp/doc root/ ja/user guides/perf/Perf-FS.pdf , 2024.

[31] RIKEN, “Fugaku,” https://www.r-ccs.riken.jp/en/ fugaku/about/ , 2025.
[32] H. Zhang et al., “Topology-preserving segmentation network: A deep

learning segmentation framework for connected component,” 2022.
[33] Fujitsu, “Mpi user’s guide,” https:// software.fujitsu.com/ jp/manual/

manualfiles/m220010/ j2ul2480/02enz009/ j2ul-2480-02enz0.pdf , 2022.
[34] J. Bertels et al., “Optimizing the dice score and jaccard index for medical

image segmentation: Theory and practice,” in Medical Image Computing
and Computer Assisted Intervention, 2019.

[35] S. Muro et al., “Evaluating accuracy in artificial intelligence-powered
serial segmentation for sectional images applied to morphological stud-
ies with three-dimensional reconstruction,” Microscopy, 2025.

11

AnalyticsPerformance

dimensions. For example, s = 4 and s = 8 correspond to
quadtree and octree structures, respectively [28]. Next, we split
regions based on pixel intensity variance, ensuring uniform
sequence length for GPU efficiency. Finally, we generate
patch sequences via Z-order space-filling curves, maintaining
alignment between image and mask patches. (3) Depatching:
We constructs masks during inference by upscaling the patch
sequences using the original quad/octree structure, hence elim-
inating the need for U-Net decoders by using the sparse mask
information instead.

d) Training Our Foundation Model. In Fig. 6, we present
the complete training flow of our foundation model. We trained
the model in two steps. First, we perform pre-training on
label-free high-resolution images using MAE (as described in
Section V-B-b). The pre-training phase uses 45 sample groups,
with each group trained for a total of 800 epochs. The training
is conducted on 2,048 GPUs provided by Frontier. Through
MAE pre-training, we enhance the model’s generalization
capability on real-world data.

Next is the fine-tuning stage. We first employ the simulated
reconstructed method we introduced in Section V-B-a to gen-
erate high-precision data and labels, totaling 62, 400 8K2 2D
slices (780⇥80). We then replace the encoder in SAM 2 with
the pre-trained MAE weights and split the synthetic dataset
into training and testing sets at a 85 :15 ratio for fine-tuning.
Additionally, to address the long-sequence issue inherent in
attention mechanisms, we adopt SAP to reduce computational
overhead. The Evaluation section provides quantitative and
qualitative comparisons between our model and baselines.

C. Fusion of XCT and AI inference in to a Single Pipeline
This section focuses on optimizing the image reconstruction

and AI-driven analysis pipeline to eliminate redundant I/O
operations. Our goal is to minimize unnecessary data transfers
and enhance overall efficiency.

a) Memory-resident End-to-end Pipeline. To mitigate
performance bottlenecks caused by frequent I/O operations on
the PFS, ROVAI implements a memory-resident end-to-end
pipeline, as shown in Fig. 8. In this design, high-resolution
3D volumetric data (more than 2TB per volume), generated
by the FPB module, is stored entirely in the memory of the
MPI ranks. This allows downstream AI tasks, like semantic
segmentation, to directly access the data without having to
load or store it from the PFS, eliminating redundant I/O
operations. By keeping the data in memory throughout the
pipeline, ROVAI prevents unnecessary data transfers. This is
particularly important since I/O can be a significant bottleneck
when performing full-system scale parallel computing for FBP
image reconstruction and AI-driven 3D image analysis.

We implemented two key strategies for reducing storage I/O.
First, to minimize redundancy in the mask-based outputs from
AI models, we introduced a bitmap-based representation [29].
This optimization reduces the original 32-bit output from the
AI model to a 2-bit representation, corresponding to a four-
class mask, thus reducing the storage footprint to 1

16 of the
original size. Second, once the image reconstruction results

Transfer patches
after SAP ViT

MPI_Alltoallv

ViT

ViT

ViT
MPI_Alltoallv

Inverse
transfer

② ③ ④ -Distributed Inverse SAP⑤-Distributed SAP① -Model with Data Parallel
Fig. 8: Memory-resident end-to-end pipeline for distributed image
reconstruction fused with 3D segmentation.

Comp AI : 881 s

Comp : 192 s

Load

Comm

Store

Computation

Communication

Storage Load

Comp

Storage Store

Comp AI

Barrier-Vol

Store AI

Barrier-Proj Barrier-VolBarrier-Vol

 BP

Memory Load

Preprocess
...

Bcast

Memory Store

AI

Bitmap

Inverse SAPSAP

Alltoallv

Load : 17 s

Comm : 53 s

Store : 62 s

Comp : 70 s

Load : 224 s

Comm : 93 s

Store : 1120 s

Barrier-AllBarrier-All Barrier-AllBarrier-All

(a) Step-by-step workflow of the ROVAI framework for group row partitions.

(b) Pipeline for H3 imaging. (c) Pipeline for entire ROVAI framework.

Store AI : 126 s

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

LLIO Load Alltoallv

Fig. 9: Pipeline optimization runtime measured in seconds. (a) is the
step-wise workflow aligned with different stages of our performance
model. The dotted box highlights a detailed view of two computation
stages. (b) Example pipeline for H3 imaging using optimal scaling
strategies (Pproj=48, Pslice=16, |G|=8) across 12,288 nodes. (c) Ex-
ample pipeline for entire ROVAI using optimal scaling strategies
(Pproj=48, Pslice=4, |G|=16) across full Fugaku: 152,064 nodes.

are generated, AI segmentation is performed directly in-place
within memory, bypassing the need for storage access and re-
ducing I/O overhead. The only additional storage access occurs
when storing the final mask results. These strategies result in
a reduction of more than 40% in I/O access throughout the
entire ROVAI workflow, as will be detailed in Section VII.

b) Overlapping Imaging & AI Computations. The main
challenge in fusing image reconstruction with AI segmentation
lies in a unified scaling strategy. For model inference, we
convert the trained PyTorch model to TorchScript and invoke it
from C++ code. This means the model has not been modified
for distributed processing. The model can only run on a single
node, taking patches as input, and producing same masks of
the same dimensions as output. For image reconstruction, as
we discussed in Section V-A-a, Pslice nodes process a single
volume slice, and Pproj ⇥Pslice nodes process an entire sub-
volume. To align the scaling of the two components, we intro-
duce additional communication to ensure that AI segmentation
can scale effectively in alignment with the scaling strategy
used for image reconstruction. Simultaneously, we minimize
the communication overhead to the greatest extent possible.

To that end, as shown in Fig. 8, starting from the distributed
image reconstruction results and ending with the distributed
mask AI outputs, the distributed process is carried out in five
steps: 1) Distribute SAP (section V-B-c) on each Pslice nodes.
Each node retains its own quadtree structure and converts the
original volume slice part into continuous patches, 2) Use
MPI Alltoallv communication to transfer only the continuous

7

101

100

102

101

102

103

101

102

103

276

134

68

37

21

19 19

3
,0

7
2

1
5
2
,0

6
4

Total CompXCT + CompAI I/O Comm Ideal

1031

526

248

174

1
2
,2

8
8

8
2
,9

4
4

1044

527

263

132

59

46 46

3
,0

7
2

1
5
2
,0

6
4

E
n
d
-t

o
-e

n
d
 R

u
n
ti

m
e
 (

m
in

)

Number of Nodes

6
,1

4
4

3
,0

7
2

2
4
,5

7
6

1
2
,2

8
8

5
5
,2

9
6

8
2
,9

4
4

1
5
2
,0

6
4

Number of Nodes

6
,1

4
4

3
,0

7
2

2
4
,5

7
6

1
2
,2

8
8

5
5
,2

9
6

8
2
,9

4
4

1
5
2
,0

6
4

2
4
,5

7
6

1
2
,2

8
8

8
2
,9

4
4

5
5
,2

9
6

Number of Nodes

81922

Resolution

40962

Resolution

163842

Resolution

(a) Strong scaling evaluated by full Fugaku; ROVAI
reconstructing 46 specimens into various resolution.

101

102

102

101

101

100

22 23 22 23 22 24
46

3,
07

2

15
2,

06
4

88 85 86 88 84 89

3,
07

2

82
,9

44

7 7 7 7 7

11

19

3,
07

2

15
2,

06
4

Number of Nodes
6,

14
4

3,
07

2

24
,5

76

12
,2

88

55
,2

96
82

,9
44

15
2,

06
4

Number of Nodes

6,
14

4

3,
07

2

24
,5

76

12
,2

88

55
,2

96
82

,9
44

15
2,

06
4

6,
14

4

3,
07

2

24
,5

76

12
,2

88

82
,9

44
55

,2
96

Number of Nodes

100

81922

Resolution

40962

Resolution

163842

Resolution

(b) Weak scaling for ROVAI on Fugaku. We scale by
proportionally increasing the number of rows (Nr).

Arithmetic Intensity

P
e
rf

o
rm

a
n
c
e

1
5
0
 G

B
/s

S
to

ra
g
e
I/
O

 B
an

d
w

id
th

3,072 nodes

12,288 nodes

768 nodes

55,296 nodes

(whole Fugaku) 152,064 nodes

Theoretical Peak = 912 PFLOPS

Bandwidth : 60 GB/s

I/O Utilization : 40%

Fuse XCT + AI

XCT Only

 AI Only

(c) Roofline (log-log) at
81922-resolution.

Fig. 13: Strong and weak scaling evaluation with roofline analysis. Both fully scale up to the maximum capacity of Fugaku: 152,064-nodes.

88

323

499

0

100

200

300

400

500

600

0

23

77

118

0

25

50

75

100

125

0

8

27

41

0

10

20

30

40

50

1

T
im

e
 (

s
)

XCT only Ideal I/OFuse XCT + AI AI only

81922 Resolution40962 Resolution 163842 Resolution

1.52x
1.53x

1.54x

39%

23
69

275
61%

40%

60%

36%

64%

Fig. 14: Average runtime reduction by fusing imaging and AI
inference for single specimen on Fugaku 55,296 nodes (I/O starts to
dominate performance). ”Ideal I/O” indicates total storage I/O access
divided by the theoretical maximum storage I/O bandwidth.

and channel capacity, constrained by OOM issues, lead to
poor generalization, particularly in local regions such as the
”rock” structures in our task. The SAM 2 model, constrained
by the quadratic complexity of the attention mechanism, is
forced to use a large patch size (128) and reduce the number
of upsampling convolutional layers, which also hinders its
performance. In contrast, our model leverages the symmetric
adaptive patching (SAP) scheme to manage sequence length
effectively, achieving strong performance in both global struc-
ture and fine local detail.

Additionally, as shown in Fig. 11b, our model can generalize
to real samples in a zero-shot setting. By performing self-
regression on a large number of real samples and fine-tuning
simulated labels within the simulator, the model can accurately
predict microstructural masks without the need for manual
annotation.

Downstream Tasks. We demonstrate that by quantifying
disconnected regions in statistically generated masks, our
model can automate 3D object counting, separation, and
distribution analysis in minutes, tasks that traditionally require
weeks of expert effort at 8K resolution. In Fig. 12, we leverage
our accurate high-resolution segmentation to extract detailed
object distributions, including size, size ranking, and clustering
by size. This enables precise material distribution analysis,
offering valuable insights into fluid mechanics and the aging
behavior of concrete materials.

C. End-to-end: Imaging Fused With AI Inference

Performance. Fig. 14 presents the overall runtime, high-
lighting the benefits of our memory-resident fusion of imaging
and AI inference. By minimizing data transfers to the PFS be-
tween the imaging and AI components, the pipeline effectively
alleviates I/O contention, which is the primary bottleneck in
high-resolution AI analytics of XCT imaging. This leads to
more efficient utilization of I/O bandwidth and a notable im-
provement in overall computational performance. Specifically,
the bitmap operation described in Section V-C-a is applied
to the segmentation mask output generated by PyTorch. This
reduces redundant I/O operations. Additionally, as shown in
Fig. 8c, AI computations can run concurrently with PFS
storing operations from imaging. This overlap between com-
putation and I/O stages improves throughput by reducing idle
time. The framework also shows consistent runtime speedup
trends across different resolutions. This stability is because
I/O access scales proportionally with image resolution, and
PFS I/O remains the primary bottleneck when scaling up to
55,296 nodes on Fugaku (1/3 of the system). On average,
we achieve a 1.53x speedup across output images of various
resolutions. When focusing solely on the AI component, 60%
of its runtime overlaps with imaging computations.

Scaling. Fig. 13a shows strong scaling of ROVAI on Fu-
gaku from 3,072 to 152,064 nodes, generating 46 volumes
concurrently. For 16,3843 resolution, runs below 12,288 nodes
exceeded the 24-hour limit and were excluded. Near-linear
speedup is observed up to 55,296 nodes for 4,0963 and 8,1923,
and up to 82,944 nodes for 16,3843, indicating efficient paral-
lelization of XCT and AI segmentation. Performance flattens
at larger scales due to PFS I/O bottlenecks that limit pipeline
overlap. Fig. 13b shows weak scaling, increasing detector rows
with node count from 3,072 to 152,064. Perfect scaling is
achieved at 16,3843 resolution, while lower resolutions see a
drop at full scale due to insufficient workload per node, which
results in a strong-scaling-like effect.

Roofline Analysis. Fig. 13c shows a full Fugaku scale
Roofline. The horizontal line marks peak compute (912
PFLOPS across 152,064 nodes), while the sloped line is PFS
storage peak I/O bandwidth (150 GB/s) [30]. Dotted markers

10

Workshop Questions

Q1 : What missing interoperability layers (software, standard, or abstraction) would most accelerate convergence
between traditional HPC linear algebra workflows and today’s extreme-scale AI workloads.
A1: Coupling HPC application with AI is a challenge

Q2 :Looking ahead to 2030, do you expect the principal bottleneck for extreme-scale AI to be data, algorithms, resilience
or energy, and how does that prediction shape your research priorities today
A2: Money.

Q3 : Given the different developments in architecture processors for AI and “computational science”, do you think we'll
see a convergence or divergence of roadmaps?
A3: HPC has, and will, adapt itself to the hardware designed for AI

