
Optimizing inference engine for large MoE
language models: experience and lessons

Kun Tan

Director of Distributed and Parallel Software Lab

Huawei Technologies

DP2E-AI 2025, Paris

CloudMatrix Ascend Super-computer

NPU0 NPU1 NPU7

SW SW SW

NPU0 NPU1 NPU7

SW SW SW

NPU0 NPU1 NPU7

SW SW SW

SW SW SW SW SW SW

Cube AI

core

Vector

core

Cache/Buffer

MTE

HBM

Unified buffer

interconnection:

scalable, memory

semantics w/ unified

address space, out-

of-order and

multipath native

NVL72 CloudMatrix

of node 72 384

Peak (Pflops) 180 300

Mem BW(TBps) 7.9 (576) 3.2 (1229)

Int. BW(TBps) 1.8 (130) 2.8 (269)

CloudMatrix Ascend Super-computer

JiuSi(九思): vLLM-based Ascend-affined inference engine

vLLM v1 framework

YuanRong Distributed Runtime

MindSpore

CANN

AI Supercomputer

• JiuSi (九思）

• Based on vLLM v1 architecture

• An easy-hacking codebase

• Distributed KV Cache centric

• Enhanced request load-balancing, scheduling,

and rich parallel mechanisms

• Asynchronous processing optimizations to vLLM

• YuanRong(元戎）

• A serverless runtime for clusters

• Providing elasticity for JiuSi workers

• Data system – a distributed object memory

• An ideal substrate for distributed KVC

JiuSi engine

Distributed KV cache

Request LB Scheduler
Parallel
Manager

Serving LLM

Global proxy
(Request LB)

Inference instance

API server
(Local Request LB)

Engine Core
(Scheduler)

Worker
(Rank 0)

Worker
(Rank N)

Inference instance

API server
(Local Request LB)

Engine Core
(Scheduler)

Worker
(Rank 0)

Worker
(Rank N)

Engine Core
(Scheduler)

Worker
(Rank 0)

Worker
(Rank N)

Distributed KV Cache

SPMD

Replication

Distributed
Pipelining

User request
Parallel Manager

• TPOT – Time per Output Token

• TTFT – Time to First Token

• TPUT – Throughput per NPU

DeepSeek V3/R1

• A game-changer open source (none-)reasoning model that is on par with SOTA proprietary LLMs

• Boosting new surge of demands on LLM inferencing and agents

• 671B model but with many innovations for efficiency and high performance

• MLA, MoE, MTP

Multi-head latent attention

• Compress KV cache into a latent space

• Save up to 93.3% KVC space compared to original MHA （70KB per token!）

DeepSeek Mixture-of-Experts

• Fine-grained experts – 256 experts (activation 37B)

• Shared experts vs. routed experts

• 1+256 experts

Multiple Token Prediction

• Involving multiple token prediction at training stage

• Increase stability at when training, and also increasing throughput as speculative decoding

Optimizing DeepSeek infer. on Ascend – MLA Kernel

MLA-Pre

Multi-Group
FlashAttn

MatMul

MatMul

• Our strategy: leverage existing FlashAttention implementation

(batch, seq) MLA-Pre w/o. fusion

(16,1K) 65.133 130.846

(16,2K) 61.852 122.766

(32,2K) 72.134 163.113

Optimizing DeepSeek infer. on Ascend – MLA Kernel

MLA-Pre

Multi-Group
FlashAttn

MatMul

MatMul

• Our strategy: leverage existing FlashAttention implementation

Optimization 2 – MTP decoding

• MTP-based speculative decoding is helpful

• Improving decoding throughput by 1.8x

t0

Embedding

Transformer
Block * 61

Output head

Main Model

t0

Linear projection

RMSNorm

Output head
MTP module

Embedding

RMSNorm

Transformer Block

t1 t2’

Propose

t3

Embedding

Transformer
Block * 61

Output head

Main Model

t1

Linear projection

RMSNorm

Output head
MTP module

Embedding

RMSNorm

Transformer Block

t2 t4

Propose
Iter. 1

Iter. 2

t2'

Verify （t2 = t2’）

t3

Dataset MTP
Accuracy

C-Eval 81.4%

GSM8K 88.7%

MMLU 90.7%

• MTP Tokens Acceptance Rate

Optimization 3 – Prefill-decode disaggregation

• Latency orientated deployment – minimizing the end-to-end delay

• TTFT < 1s; TPOT < 50ms ~ 20 tps throughput per user

• Batching as more requests as possible to increase NPU utilization

• Adopt different strategies to maximize parallelism at prefill- and decode-stage

• Prefill – Tensor-Parallel + Data-Parallel

• Decode – Expert-Parallel + Fine-grained Data-Parallel

Engine Core
(Scheduler)

wkr. 0 wkr. k

Attn. 0

Expt. 0

AllReduce

AllReduce

Attn. k

Expt. k

wkr. 0 wkr. m

Attn. 0

Expt. 0

All-to-all Dispatch

All-to-all Combine

Attn. m

Expt. m

Engine Core
(Scheduler)

Engine Core
(Scheduler)

K*p M

16*2 32

16*4 64

16*16 288
prefill decode

Optimization 3 – Prefill-decode disaggregation

Engine Core
(Scheduler)

wkr. 0 wkr. k

Attn. 0

Expt. 0

AllReduce

AllReduce

Attn. k

Expt. k

wkr. 0 wkr. m

Attn. 0

Expt. 0

All-to-all Dispatch

All-to-all Combine

Attn. m

Expt. m

Engine Core
(Scheduler)

Engine Core
(Scheduler)

K*p M

16*2 32

16*4 64

16*16 288
prefill decode

Optimization 4 – Dispatch/Combine for MoE EP

• Kernels fusing two all-to-all collectives for EP

• Pre-allocated communication buffer and dispatching/combining

• Finer compute-communication overlapping with MEM WRITE

• Transmission scheduling for shared experts – avoiding in-casting

• Communication-time quantization

Gating All-to-all-v
All-to-
all sync. Expert…

Dispatching Expert…

Quantization

All-to-
all sync.

All-2-all dispatch

Naïve multi-kernal
Gate 0 Gate 1 Gate m

S-Exp 0 S-Exp 1 S-Exp m

Unscheduled

Gate 0 Gate 1 Gate m

S-Exp 0 S-Exp 1 S-Exp m

ScheduledGating

Put them all together

MLA-Pre FA
Gati
ng

Dispatch Exp. Combine

Cluster size Batch TPOT (us) TPUT (tpsc)

64 1 34 29.4

128 32 50 640

288 96 55 1745

Performance
w. seqlen = 2K

Breakdown

Attention Dispatch Exp. Combine

846 184 234 216

Insights and future directions

• Better model and hardware designs close the gap among computing, memory, and

communication

• e.g., MLA, UB interconnection

• Memory bandwidth is still bottleneck, but the gap is much smaller

• Tricks (like better quantization) can still be applied to even close the gap

• Future optimization needs to consider both in memory and compute

• Sparsity in time (sequence) dimension is promising Computing HBM accessing

40%

60%

• Deeper fused kernels

• Enable finer pipelining and better computing-communication overlapping

• FusedDeepMLA - MLA-Pre + FlashAttn + Gating

• FusedDeepMOE – Dispatch + Exp. + Combine

• Expecting 20+% performance boosting

• Better frameworks to build fused kernels

Insights and future directions (cont.)
• Benchmark vs. deployment

• Canary deployment on production environment

• Only ~ 50% of benchmarked throughput

• Unbalancing among experts calls for dynamic experts scheduling

Thank you！ Thank you!

