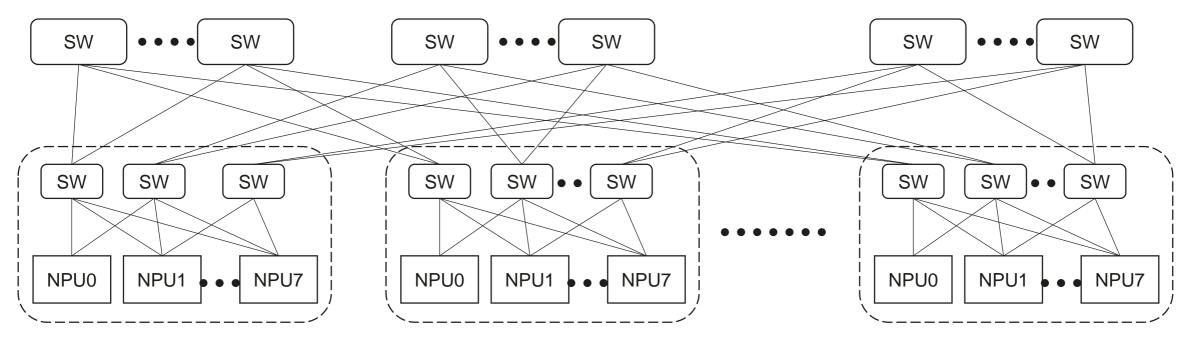
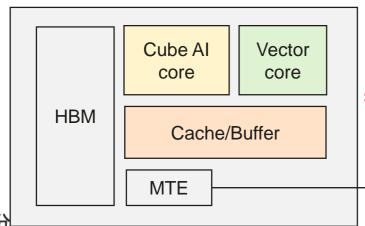


CloudMatrix Ascend Super-computer





Distributed and Parallel Software Laboratory

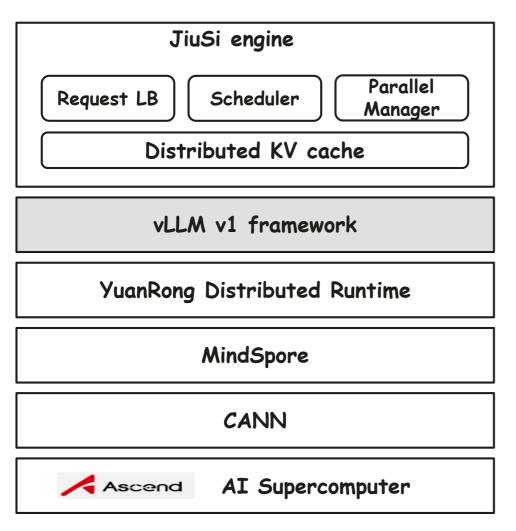
Unified buffer interconnection:

scalable, memory semantics w/ unified address space, outof-order and multipath native

	NVL72	CloudMatrix
# of node	72	384
Peak (Pflops)	180	300
Mem BW(TBps)	7.9 (576)	3.2 (1229)
Int. BW(TBps)	1.8 (130)	2.8 (269)

CloudMatrix Ascend Super-computer

JiuSi(九思): vLLM-based Ascend-affined inference engine



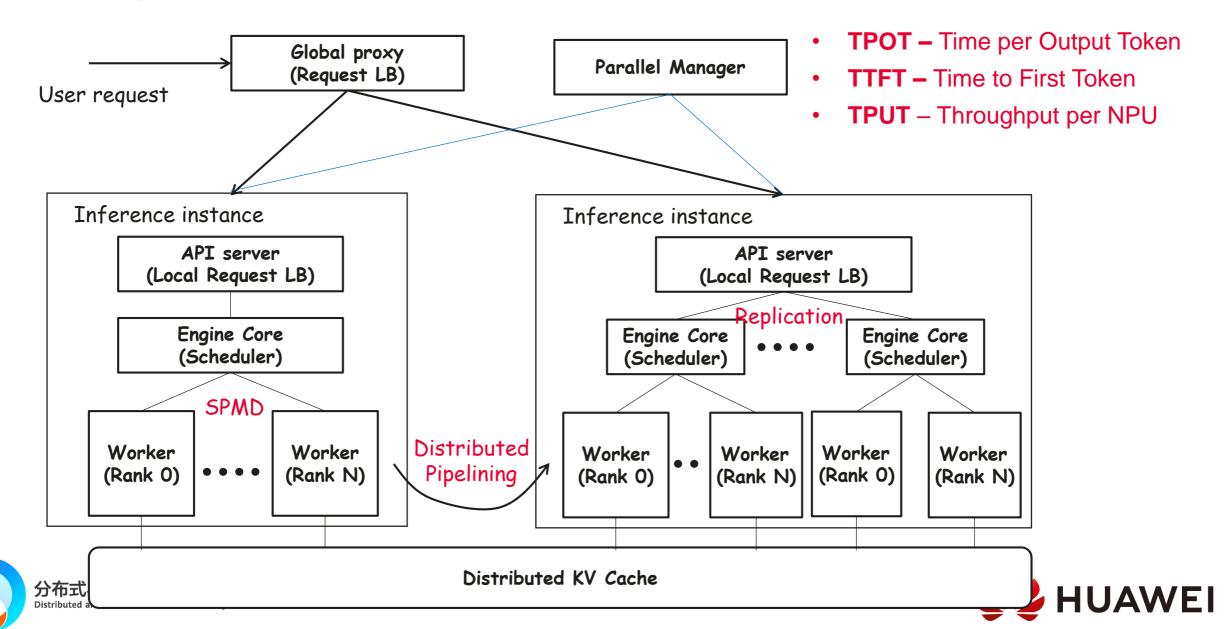
· JiuSi (九思)

- Based on vLLM v1 architecture
 - An easy-hacking codebase
- Distributed KV Cache centric
- Enhanced request load-balancing, scheduling, and rich parallel mechanisms
- Asynchronous processing optimizations to vLLM

· YuanRong(元戎)

- A serverless runtime for clusters
 - Providing elasticity for JiuSi workers
- Data system a distributed object memory
 - An ideal substrate for distributed KVC

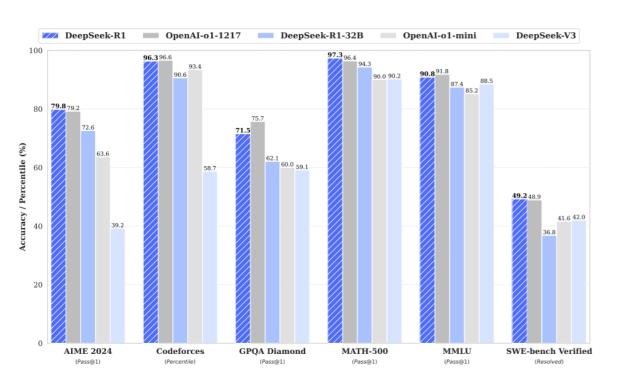
Serving LLM

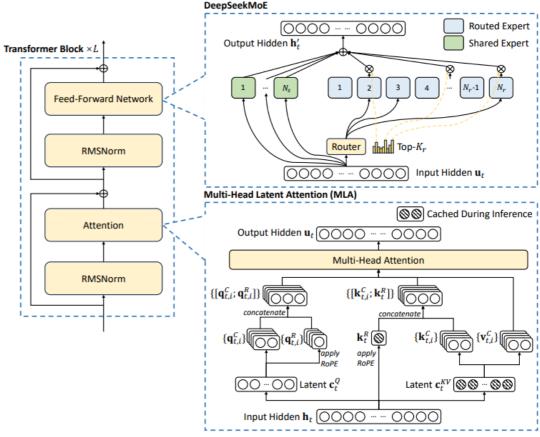


DeepSeek V3/R1

- A game-changer open source (none-)reasoning model that is on par with SOTA proprietary LLMs
- Boosting new surge of demands on LLM inferencing and agents
- 671B model but with many innovations for efficiency and high performance

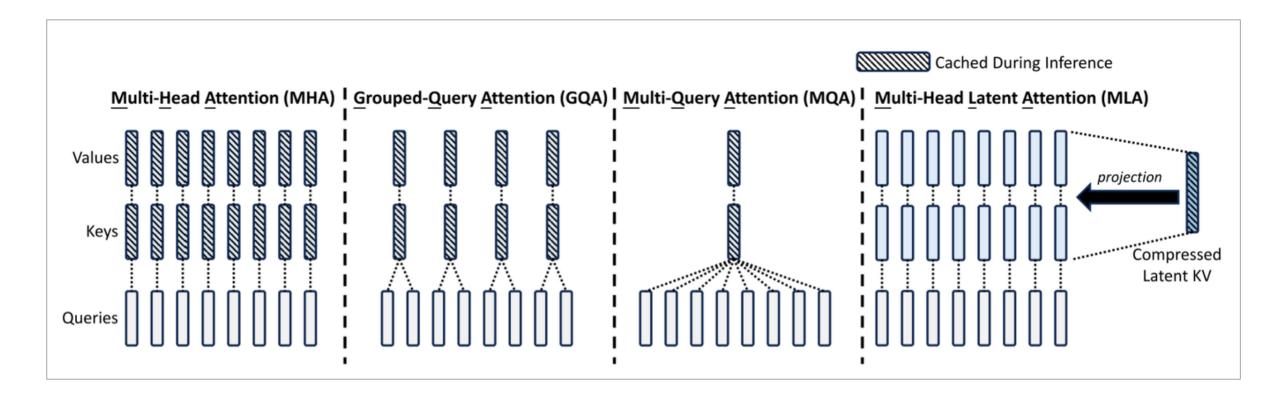
MLA, MoE, MTP





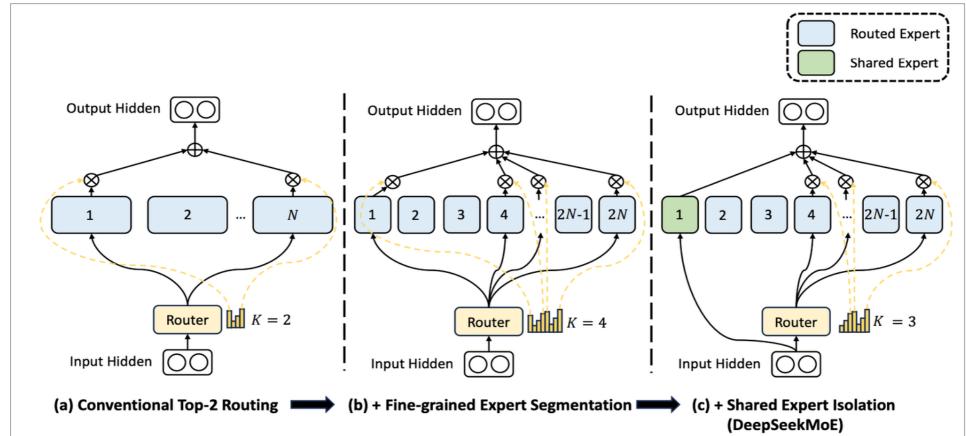
Multi-head latent attention

- Compress KV cache into a latent space
 - Save up to 93.3% KVC space compared to original MHA (70KB per token!)



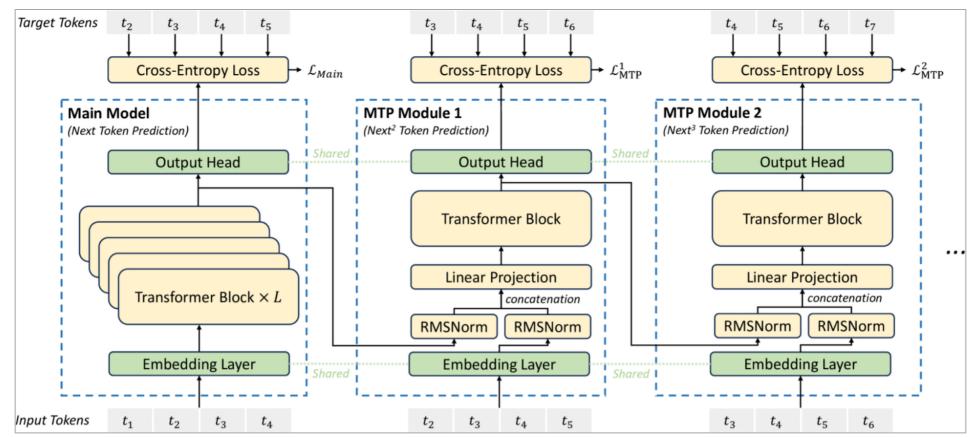
DeepSeek Mixture-of-Experts

- Fine-grained experts 256 experts (activation 37B)
- Shared experts vs. routed experts
 - 1+256 experts



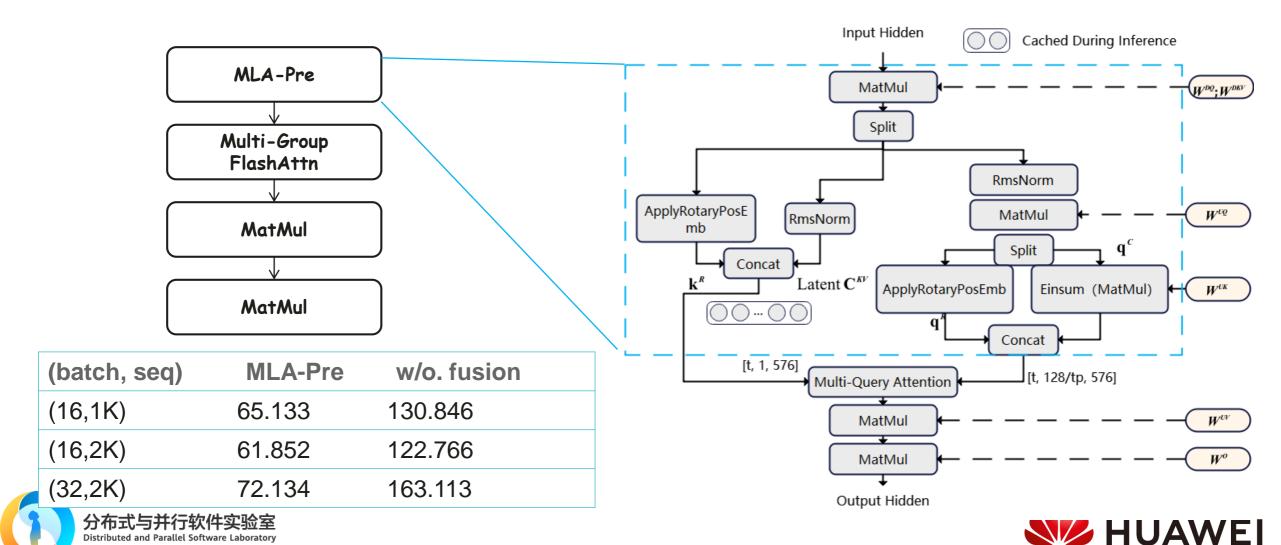
Multiple Token Prediction

- Involving multiple token prediction at training stage
- Increase stability at when training, and also increasing throughput as speculative decoding



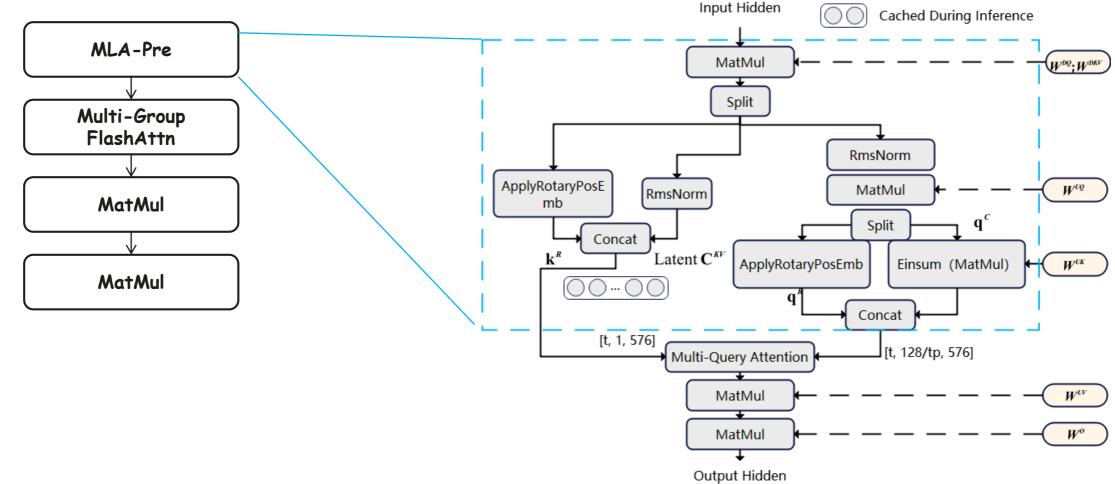
Optimizing DeepSeek infer. on Ascend – MLA Kernel

Our strategy: leverage existing FlashAttention implementation



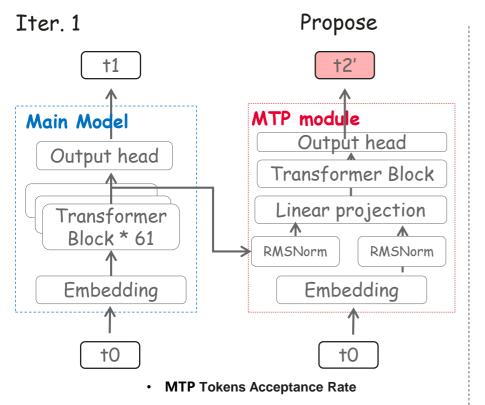
Optimizing DeepSeek infer. on Ascend – MLA Kernel

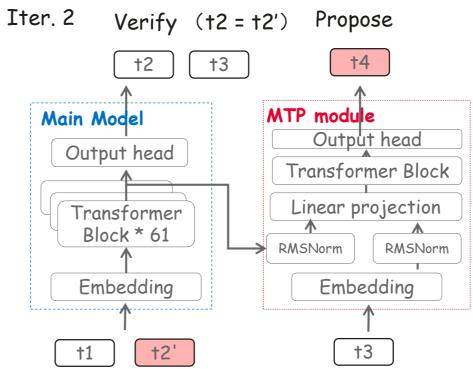
Our strategy: leverage existing FlashAttention implementation



Optimization 2 – MTP decoding

- MTP-based speculative decoding is helpful
 - Improving decoding throughput by 1.8x





	_	
Dataset	MTP	
	Accuracy	
C-Eval	81.4%	
GSM8K	88.7%	
MMLU	90.7%	

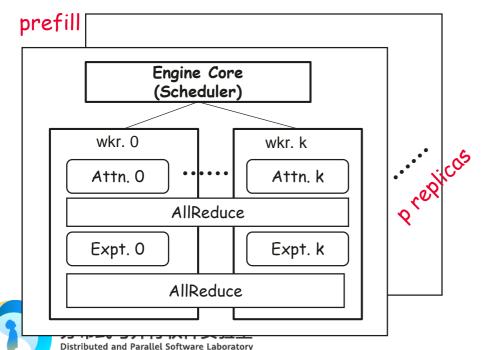
Optimization 3 – Prefill-decode disaggregation

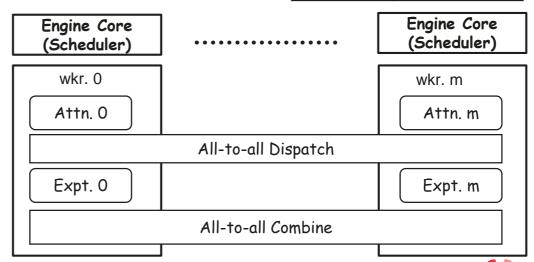
- Latency orientated deployment minimizing the end-to-end delay
 - TTFT < 1s; TPOT < 50ms ~ 20 tps throughput per user
 - Batching as more requests as possible to increase NPU utilization
- Adopt different strategies to maximize parallelism at prefill- and decode-stage

decode

- Prefill Tensor-Parallel + Data-Parallel
- Decode Expert-Parallel + Fine-grained Data-Parallel

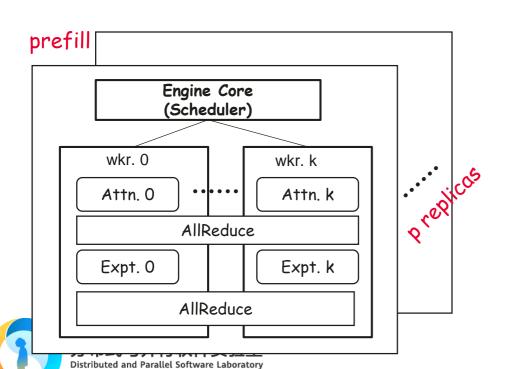
K*p	M
16*2	32
16*4	64
16*16	288



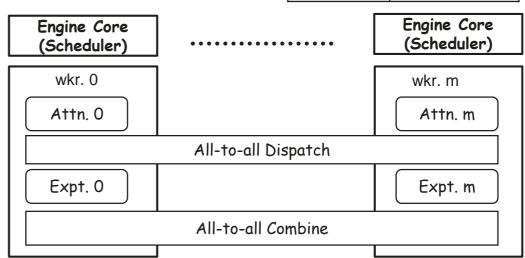


Optimization 3 – Prefill-decode disaggregation

decode



K*p	M
16*2	32
16*4	64
16*16	288



Optimization 4 – Dispatch/Combine for MoE EP

- Kernels fusing two all-to-all collectives for EP
 - Pre-allocated communication buffer and dispatching/combining
 - Finer compute-communication overlapping with MEM WRITE
 - Transmission scheduling for shared experts avoiding in-casting
 - Communication-time quantization

Naïve multi-kernal Gating All-to-all-v Expert... All-2-all dispatch Gating Quantization Dispatching All-to-all sync. Expert...

Gate 0 Gate 1 Gate m S-Exp 0 S-Exp 1 S-Exp m S-Exp m S-Exp m

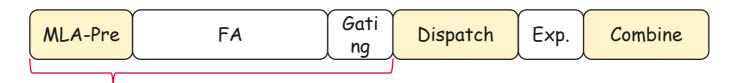
Unscheduled

Put them all together

Performance w. seglen = 2K

Cluster size	Batch	TPOT (us)	TPUT (tpsc)
64	1	34	29.4
128	32	50	640
288	96	55	1745

Breakdown



Attention	Dispatch	Exp.	Combine
846	184	234	216

Insights and future directions

Better model and hardware designs close the gap among computing, memory, and

communication

e.g., MLA, UB interconnection

- Memory bandwidth is still bottleneck, but the gap is much smaller
- Tricks (like better quantization) can still be applied to even close the gap
- Future optimization needs to consider both in memory and compute
 - Sparsity in time (sequence) dimension is promising

- Enable finer pipelining and better computing-communication overlapping
- FusedDeepMLA MLA-Pre + FlashAttn + Gating
- FusedDeepMOE Dispatch + Exp. + Combine
- Expecting 20+% performance boosting
- Better frameworks to build fused kernels

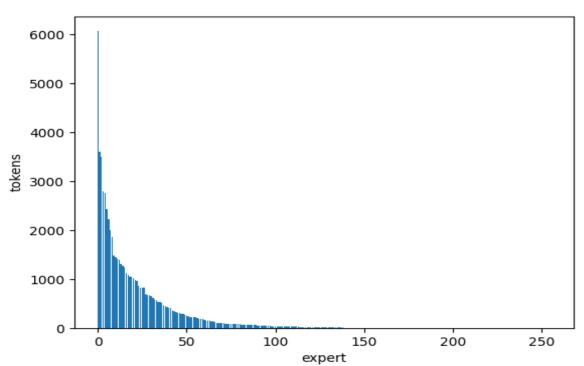
40%

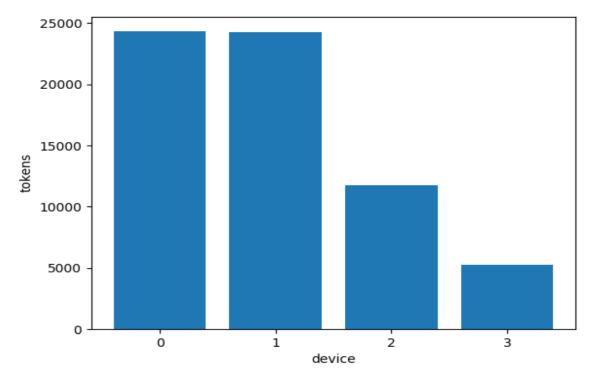
60%

■ Computing ■ HBM accessing

Insights and future directions (cont.)

- Benchmark vs. deployment
 - Canary deployment on production environment
 - Only ~ 50% of benchmarked throughput
 - Unbalancing among experts calls for dynamic experts scheduling





PSL Thank you!

