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CloudMatrix Ascend Super-computer
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NVL72 CloudMatrix

# of node 72 384

Peak (Pflops) 180 300

Mem BW(TBps) 7.9 (576) 3.2 (1229)

Int. BW(TBps) 1.8 (130) 2.8 (269)
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JiuSi(九思): vLLM-based Ascend-affined inference engine

vLLM v1 framework
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• JiuSi (九思）

• Based on vLLM v1 architecture

• An easy-hacking codebase

• Distributed KV Cache centric

• Enhanced request load-balancing, scheduling, 

and rich parallel mechanisms

• Asynchronous processing optimizations to vLLM

• YuanRong(元戎）

• A serverless runtime for clusters 

• Providing elasticity for JiuSi workers

• Data system – a distributed object memory

• An ideal substrate for distributed KVC 
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Serving LLM
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• TPOT – Time per Output Token

• TTFT – Time to First Token

• TPUT – Throughput per NPU



DeepSeek V3/R1

• A game-changer open source (none-)reasoning model that is on par with SOTA proprietary LLMs

• Boosting new surge of demands on LLM inferencing and agents

• 671B model but with many innovations for efficiency and high performance

• MLA, MoE, MTP



Multi-head latent attention

• Compress KV cache into a latent space

• Save up to 93.3% KVC space compared to original MHA （70KB per token!）



DeepSeek Mixture-of-Experts

• Fine-grained experts – 256 experts (activation 37B)

• Shared experts vs. routed experts

• 1+256 experts



Multiple Token Prediction

• Involving multiple token prediction at training stage

• Increase stability at when training, and also increasing throughput as speculative decoding



Optimizing DeepSeek infer. on Ascend – MLA Kernel

MLA-Pre

Multi-Group 
FlashAttn

MatMul

MatMul

• Our strategy: leverage existing FlashAttention implementation

(batch, seq) MLA-Pre w/o. fusion

(16,1K) 65.133 130.846

(16,2K) 61.852 122.766

(32,2K) 72.134 163.113



Optimizing DeepSeek infer. on Ascend – MLA Kernel
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Optimization 2 – MTP decoding

• MTP-based speculative decoding is helpful

• Improving decoding throughput by 1.8x
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Dataset MTP 
Accuracy

C-Eval 81.4%

GSM8K 88.7%

MMLU 90.7%

• MTP Tokens Acceptance Rate



Optimization 3 – Prefill-decode disaggregation

• Latency orientated deployment – minimizing the end-to-end delay

• TTFT < 1s; TPOT < 50ms ~ 20 tps throughput per user

• Batching as more requests as possible to increase NPU utilization

• Adopt different strategies to maximize parallelism at prefill- and decode-stage

• Prefill – Tensor-Parallel + Data-Parallel

• Decode – Expert-Parallel + Fine-grained Data-Parallel
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Optimization 4 – Dispatch/Combine for MoE EP 

• Kernels fusing two all-to-all collectives for EP

• Pre-allocated communication buffer and dispatching/combining

• Finer compute-communication overlapping with MEM WRITE

• Transmission scheduling for shared experts – avoiding in-casting

• Communication-time quantization
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Put them all together

MLA-Pre FA
Gati
ng

Dispatch Exp. Combine

Cluster size Batch TPOT (us) TPUT (tpsc)

64 1 34 29.4

128 32 50 640

288 96 55 1745

Performance 
w. seqlen = 2K

Breakdown

Attention Dispatch Exp. Combine

846 184 234 216



Insights and future directions

• Better model and hardware designs close the gap among computing, memory, and 

communication 

• e.g., MLA, UB interconnection

• Memory bandwidth is still bottleneck, but the gap is much smaller

• Tricks (like better quantization) can still be applied to even close the gap

• Future optimization needs to consider both in memory and compute

• Sparsity in time (sequence) dimension is promising Computing HBM accessing

40%

60%

• Deeper fused kernels

• Enable finer pipelining and better computing-communication overlapping

• FusedDeepMLA - MLA-Pre + FlashAttn + Gating

• FusedDeepMOE – Dispatch + Exp. + Combine

• Expecting 20+% performance boosting

• Better frameworks to build fused kernels



Insights and future directions (cont.)
• Benchmark vs. deployment 

• Canary deployment on production environment

• Only ~ 50% of benchmarked throughput

• Unbalancing among experts calls for dynamic experts scheduling



Thank you！ Thank you!


