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Introduction

A\ Challenge: High-dimensional inputs — large models, slow training, overfitting
Problem: How can we compress input dimensionality while preserving accuracy?
© Goal: Construct meaningful low-dimensional representations that preserve variance and accelerate training.

We propose a spectral embedding approach that builds a compact input representation using the dominant eigenvectors of a matrix capturing data
structure (e.g., co-occurrence, covariance). These embeddings retain the most significant variance in the dataset.

Our method uses MIRAMnsa scalable, parallel eigensolverto extract these dominant components efficiently, enabling direct projection of high-dimensional
input data onto a compact subspace defined by the dominant eigenvectors.

Why Use Restarted Projection Methods?

Motivation: Why it fits here: \ How it works:

o For very large matrices, stan- ® Efficient for large, sparse ‘ : P P e Project the problem onto a set
dard eigen-decomposition is too or structured matrices. Dot i / of smaller Krylov subspaces.
costly. e Well-suited for high par- Projction f the ot e Select the best of them.

e We only need the k dominant  allel and distributed com- @miiﬂwz(mm) Prl A e Solve reduced problem  ap-
eigenvectors, not the tull spec- puting. e lition o the problen P, proximate Ritz eigenvectors.
trum. e Basis for Multiple IRAM \ e Evaluate residuals to assess

e Restarted projection methods ~ With nested subspaces Su || Sm - approximation quality.
focus computation to detect the (MIRAMns), our spectral . / e Refine via restarts until con-
most relevant directions. embedding engine. m— et e vergence is reached.

MIRAMns as Eigensolver Methodology Overview

Why use MIRAMns? Spectral Embedding Procedure:
o Extracts k dominant eigenvectors from large matrices

' 1. Compute a square matrix
A-u; =N -y (e.g., co-occurrence matrix) to
o Handles clustered eigenvalues via nested Krylov sub- represent dataset.

spaces: . Extract k£ dominant

Ko, (A,v) = span{v, Av, A%v, ..., A™ v} eigenvectors via MIRAMns.
| with ICo... C K. C---CK . Embed original data into the
mi ma2 my
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Dataset Embedding layer Other model layers

Matrix representation Eigensolver Dominant elgenvectors

Qo et " . S k-dimensional spectral space. EEEEEE
e pdelects the best subspace 1or accurate approximation. . Train neural networks using :::::: —> f (X)—».

o Implicitly restarted avoids full recomputation. the compressed input space. ::::::

o Parallel-friendly: uses matrix-vector multiplications. EEEEEE
More stable than IRAM with faster convergence Figure: Spectral embedding pipeline. -

Key Results

Lo Accuracy vs Embedding Dimension on MNIST dataset Performance nghllghtS: Accuracy vs. Embedding Dimension on CIFAR-10 dataset Radal“ Dataset Example:
: : : . ——— Baseline | Embedding
- < L().W—dlmensmnal embeddlngs re- Tt dim o o
tain 95-98% accuracy of full-input /, 4 params 1,143,815 233,991
0.96 . .
performance. . / Train. Time (s) 1180 727
o . | Test Acc. (%) 98.772 98.390
; «r Some datasets show improved ;
g . Large size model performance :Ed 037 Large size model ¢ Input dimensj‘on:
——— Large model reduction dimension . . | Medium size model :
0.90 I\/Ieiium size model % SuggeStlﬂg I'@dU.Ced OVGI’ﬁttlng Low size model 1 7 >< redUCtlon
——— Medium model reduction dimension 02 - Very low size model
0.88 Low size model . . . - Large model reduction dimension ® Pa‘ramet erS:
— Low model reduction dimension ¢ Slgnlﬁcant mOdel CompreSSIOn = Medium model reduction dimension
Very low size model —— Low model reduction dimension 4- 8 >< Smal]-er
0.86 = Very low model reduction dimension 0.1 - Very low model reduction dimension T . . .
1 4 7 10 13 16 19 22 f2'5' i2|8| 31 3437 40 43 46 49 Smaller Models, Same 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 ° rammg time:
Embedding dimension Accuracy Embedding dimension _35% Wlth <O.5% accuracy IOSS

Conclusion Future Work Explore our Research

e Effective dimensionality reduction: Spectral embed- e Extend to complex data types: Apply the ap-
dings based on dominant eigenvectors successfully reduce in- proach to graphs and text data, where structure-
put dimension while maintaining model accuracy. aware embeddings can bring additional benefits.

Performance preservation: Data-specific embeddings Integrate with modern NNs: Explore compati-
enable the development of smaller and faster neural networks bility with convolutional NNs and transformer-based
without compromising computational performance or predic- models to broaden the method’s applicability.

tive capabilities. Scale to large language models: Extend the
Robust algorithmic framework: MIRAMns ensures methodology to more complex deep learning models
reliable convergence, effectively handles clustered eigenval- such as LLMs.

ues, and scales efficiently in distributed environments.




