

Spectral Embedding to Compress Neural Architectures Without Performance Loss

LI-PARAC

Laboratoire d'informatique

Quentin Petit

Mines Paris - PSL University France
Paris, France
quentin.petit@minesparis.psl.eu

Chong Li

Huawei Paris Research Center

Boulogne-Billancourt, France

ch.l@huawei.com

MDLS, Li-PARaD & UVSQ Saclay, France nahid.emad@uvsq.fr

Nahid Emad

Introduction

Challenge: High-dimensional inputs \rightarrow large models, slow training, overfitting

Problem: How can we compress input dimensionality while preserving accuracy?

© Goal: Construct meaningful low-dimensional representations that preserve variance and accelerate training.

We propose a spectral embedding approach that builds a compact input representation using the dominant eigenvectors of a matrix capturing data structure (e.g., co-occurrence, covariance). These embeddings retain the most significant variance in the dataset.

Our method uses MIRAMnsa scalable, parallel eigensolver to extract these dominant components efficiently, enabling direct projection of high-dimensional input data onto a compact subspace defined by the dominant eigenvectors.

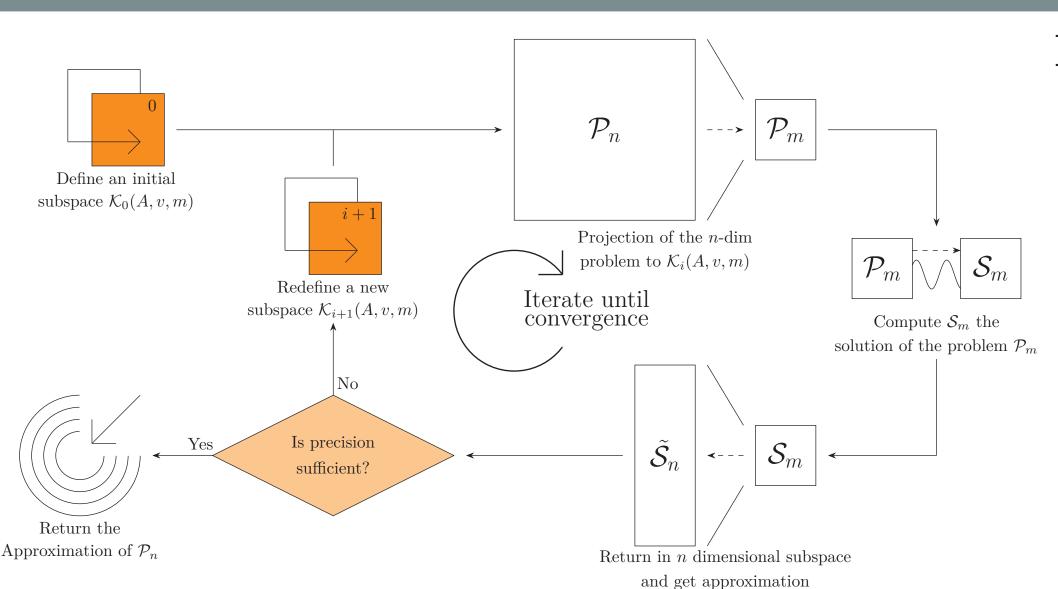
Why Use Restarted Projection Methods?

Motivation:

- For very large matrices, standard eigen-decomposition is too costly.
- We only need the k dominant eigenvectors, not the full spectrum.
- Restarted projection methods focus computation to detect the most relevant directions.

Why it fits here:

- Efficient for large, sparse or structured matrices.
- Well-suited for high parallel and distributed computing.
- Basis for Multiple IRAM with nested subspaces (MIRAMns), our spectral embedding engine.



How it works:

- Project the problem onto a set of smaller Krylov subspaces.
- Select the best of them.
- Solve reduced problem approximate Ritz eigenvectors.
- Evaluate residuals to assess approximation quality.
- Refine via restarts until convergence is reached.

MIRAMns as Eigensolver

Why use MIRAMns?

ullet Extracts k dominant eigenvectors from large matrices.

$$A \cdot u_i = \lambda_i \cdot u_i$$

• Handles *clustered eigenvalues* via nested Krylov subspaces:

$$\mathcal{K}_{m_i}(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{m_i-1}v\}$$
with $\mathcal{K}_{m_1} \subset \mathcal{K}_{m_2} \subset \dots \subset \mathcal{K}_{m_l}$

- Selects the best subspace for accurate approximation.
- Implicitly restarted avoids full recomputation.
- Parallel-friendly: uses matrix-vector multiplications.

More stable than IRAM with faster convergence

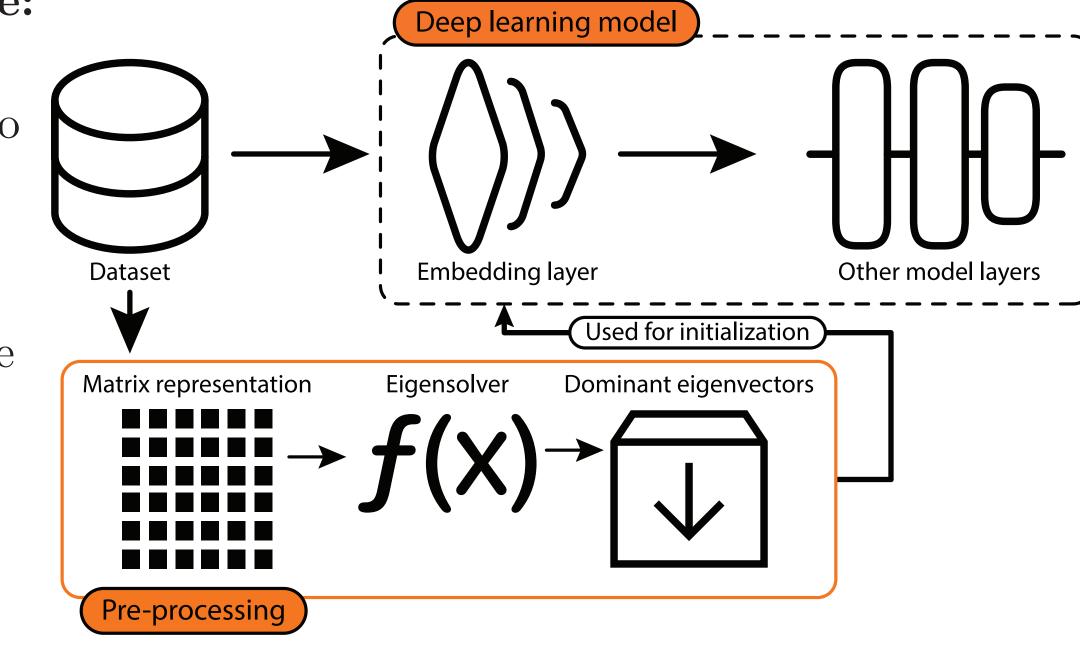
Methodology Overview

Spectral Embedding Procedure:

- 1. Compute a square matrix (e.g., co-occurrence matrix) to represent dataset.
- 2. Extract k dominant eigenvectors via MIRAMns.
- 3. **Embed** original data into the k-dimensional spectral space.
- 4. **Train** neural networks using the compressed input space.

Figure: Spectral embedding pipeline.

Key Results

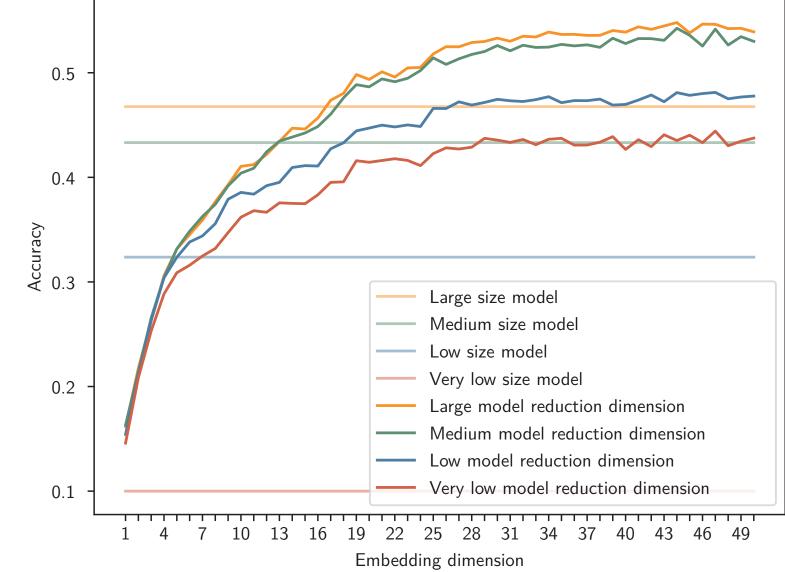


Accuracy vs Embedding Dimension on MNIST dataset 1.00 0.98 0.96 0.90 Large size model Large model reduction dimension Medium size model Medium model reduction dimension Low size model Low model reduction dimension Very low size model Very low model reduction dimension Wery low model reduction dimension 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 Embedding dimension

Performance Highlights:

- Low-dimensional embeddings retain 95-98% accuracy of full-input performance.
- Some datasets show improved performance
- \rightarrow suggesting reduced overfitting
- Significant model compression

Smaller Models, Same Accuracy



Accuracy vs. Embedding Dimension on CIFAR-10 dataset

Radar Dataset Example:

	Baseline	Embedding
Input dim	175	10
# params	1,143,815	233,991
Train. Time (s)	1180	727
Test Acc. (%)	98.772	98.390

- Input dimension: 17× reduction
- Parameters: 4.8× smaller
- Training time:
- -35% with <0.5% accuracy loss

Conclusion

- Effective dimensionality reduction: Spectral embeddings based on dominant eigenvectors successfully reduce input dimension while maintaining model accuracy.
- Performance preservation: Data-specific embeddings enable the development of smaller and faster neural networks without compromising computational performance or predictive capabilities.
- Robust algorithmic framework: MIRAMns ensures reliable convergence, effectively handles clustered eigenvalues, and scales efficiently in distributed environments.

Future Work

- Extend to complex data types: Apply the approach to graphs and text data, where structure-aware embeddings can bring additional benefits.
- Integrate with modern NNs: Explore compatibility with convolutional NNs and transformer-based models to broaden the method's applicability.
- Scale to large language models: Extend the methodology to more complex deep learning models such as LLMs.

