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Introduction
Exclamation-Triangle Challenge: High-dimensional inputs → large models, slow training, overfitting

Question-Circle Problem: How can we compress input dimensionality while preserving accuracy?

◎ Goal: Construct meaningful low-dimensional representations that preserve variance and accelerate training.

We propose a spectral embedding approach that builds a compact input representation using the dominant eigenvectors of a matrix capturing data
structure (e.g., co-occurrence, covariance). These embeddings retain the most significant variance in the dataset.

Our method uses MIRAMnsa scalable, parallel eigensolverto extract these dominant components efficiently, enabling direct projection of high-dimensional
input data onto a compact subspace defined by the dominant eigenvectors.

Why Use Restarted Projection Methods?
Motivation:
• For very large matrices, stan-

dard eigen-decomposition is too
costly.

• We only need the k dominant
eigenvectors, not the full spec-
trum.

• Restarted projection methods
focus computation to detect the
most relevant directions.

Why it fits here:
• Efficient for large, sparse

or structured matrices.
• Well-suited for high par-

allel and distributed com-
puting.

• Basis for Multiple IRAM
with nested subspaces
(MIRAMns), our spectral
embedding engine.

Is precision
sufficient?
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How it works:
• Project the problem onto a set

of smaller Krylov subspaces.
• Select the best of them.
• Solve reduced problem ap-

proximate Ritz eigenvectors.
• Evaluate residuals to assess

approximation quality.
• Refine via restarts until con-

vergence is reached.

Methodology Overview
Spectral Embedding Procedure:

1. Compute a square matrix
(e.g., co-occurrence matrix) to
represent dataset.

2. Extract k dominant
eigenvectors via MIRAMns.

3. Embed original data into the
k-dimensional spectral space.

4. Train neural networks using
the compressed input space.

Figure: Spectral embedding pipeline.
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MIRAMns as Eigensolver
Why use MIRAMns?

• Extracts k dominant eigenvectors from large matrices.
A · ui = λi · ui

• Handles clustered eigenvalues via nested Krylov sub-
spaces:

Kmi
(A, v) = span{v, Av, A2v, . . . , Ami−1v}

with Km1 ⊂ Km2 ⊂ · · · ⊂ Kml

• Selects the best subspace for accurate approximation.
• Implicitly restarted avoids full recomputation.
• Parallel-friendly: uses matrix-vector multiplications.

More stable than IRAM with faster convergence

Key Results
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Performance Highlights:

Low-dimensional embeddings re-
tain 95-98% accuracy of full-input
performance.
Some datasets show improved
performance

→ suggesting reduced overfitting
• Significant model compression

Smaller Models, Same
Accuracy
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Accuracy vs. Embedding Dimension on CIFAR-10 dataset
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Radar Dataset Example:
Baseline Embedding

Input dim 175 10
# params 1,143,815 233,991
Train. Time (s) 1180 727
Test Acc. (%) 98.772 98.390

• Input dimension:
17× reduction

• Parameters:
4.8× smaller

• Training time:
-35% with <0.5% accuracy loss

Conclusion
• Effective dimensionality reduction: Spectral embed-

dings based on dominant eigenvectors successfully reduce in-
put dimension while maintaining model accuracy.

• Performance preservation: Data-specific embeddings
enable the development of smaller and faster neural networks
without compromising computational performance or predic-
tive capabilities.

• Robust algorithmic framework: MIRAMns ensures
reliable convergence, effectively handles clustered eigenval-
ues, and scales efficiently in distributed environments.

Future Work
• Extend to complex data types: Apply the ap-

proach to graphs and text data, where structure-
aware embeddings can bring additional benefits.

• Integrate with modern NNs: Explore compati-
bility with convolutional NNs and transformer-based
models to broaden the method’s applicability.

• Scale to large language models: Extend the
methodology to more complex deep learning models
such as LLMs.
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