
RESEARCH POSTER PRESENTATION DESIGN © 2022

www.PosterPresentations.com

Modern data centers increasingly co-locate multiple ML inference 
workloads on a single GPU device for well utilizing the computational 
resources. However, existing temporal and spatial multiplexing 
techniques often fall short in accurately allocating resources and 
meeting performance expectations. We identify that this inefficiency 
stems from neglecting the importance of latency-critical kernels 
during scheduling. 
To address this, we propose Fico, a fine-grained GPU sharing 
framework that adjusts resource allocation based on kernel-level 
priorities.  Fico can dynamically update GPU quotas based on critical 
kernel detection and schedule execution accordingly to maximize 
efficiency and fairness. It integrates lightweight profiling and runtime 
control to enforce tenant quotas while reducing end-to-end latency. 
Evaluation across diverse DNN workloads show that Fico lowers 
inference latency by 37.3% on average compared to prior methods, 
while faithfully preserving quota guarantees.

Introduction

Objectives

Evaluation

Experimental Setup 
• Benchmarks: Several representative DNN models 
• Platform: NVIDIA A6000 and PyTorch, and 5 different workload distributions
• Baselines: Include comparison with MPS and state-of-the-art systems (REEF[1],
• KRISP[2], ORION[3]).

Figure 2: Performance comparison when applying two homo-models

Conclusion

This poster presents Fico, a fine-grained GPU sharing system designed to improve 
inference latency and resource fairness in multi-tenant environments. 
By identifying and prioritizing dominant ML kernels during scheduling, Fico 
mitigates the inefficiencies of existing quota-based approaches that treat all 
workloads uniformly. It integrates lightweight runtime profiling and quota-aware 
scheduling to provide strict resource guarantees while enhancing 
responsiveness. 
Extensive evaluations across diverse deep learning workloads demonstrate that 
Fico achieves an average latency reduction of 37.3% compared to state-of-the-
art systems, without violating tenant quotas.

References

[1] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. 2022. 
Microsecond-scale Preemption for Concurrent GPU-accelerated DNN 
Inferences. In OSDI 2022, 539– 558.
[2] Marcus Chow, Ali Jahanshahi, and Daniel Wong. 2023. Krisp: Enabling kernel-
wise right-sizing for spatial partitioned gpu inference servers. In HPCA 2023, 624–
637
[3] Foteini Strati, Xianzhe Ma, and Ana Klimovic. 2024. Orion: Interference-
aware, fine-grained GPU sharing for ML applications. In EuroSys 2024, 1075–1092

• Enable Low-Latency Inference in Multi-Tenant GPU Systems 
• Enforce flexible and lightweight GPU Quota Guarantees  
• Prioritize Dominant ML Application Kernels to Improve Scheduling Efficiency  
• Demonstrate Practical Effectiveness Through Real-World Evaluation

City University Of Hong Kong
Zixi CHEN, Junqiao QIU

Optimizing Concurrent Inferences with Fine-grained 
GPU Sharing

Framework

Our proposed GPU sharing system Fico consists of two major components: 
• an interference-aware offline profiling which collects the important and 

necessary information about kernels;
• critical kernel prioritized runtime scheduling which determine how to fine-

grained share the GPU resources when each launched kernel is assigned.

It is developed to be transparent to end users and requires no API changes. 
The current prototype is implemented as a dynamically linked library that 
controls GPU operations submitted by an application framework

Figure 1: Overview of Fico

SM 0 SM 1
TPC 0

SM 0 SM 1
TPC 1

SM 0 SM 1
TPC n

. . .

L2 Cache

Memory

Compute Units

Task Meta DataGPU

DNN ModelsDNN ModelsDNN Models

Client 1 Client 2

K
er

ne
l 

Q
ue

ue
s

Critical Kernel Prioritized Scheduler

SM Masking

Profiled Data

Offline Online

C1 C2

Client 4Client 3

C1C3
M

Interference-aware Profiler 

0.0

0.5

1.0

1.5

L H P T A L H P T A L H P T A L H P T A L H P T A

REEF KRISP ORION FICKS

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t (

RP
S)

 
ov

er
 M

PS

>1.5

0.0

0.5

1.0

1.5

L H P T A L H P T A L H P T A L H P T A L H P T A

REEF KRISP ORION FICKS

N
or

m
al

iz
ed

 P
99

 L
at

en
cy

ov
er

 M
PS

Resnet152 Resnet101 Densenet201 VGG MobilenetV2

>1.5

Inference latency (lower the better) 

Overall throughput (higher the better) 

Resnet152 Resnet101 Densenet201 VGG MobilenetV2

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

Fico

Fico

0

0.5

1

L M H P T A L M H P T A L M H P T A L M H P T A L M H P T A

R152 R101 Dnet VGG Mnet

No
rm

ali
ze

d 
p9

9 
la

ten
cy

MPS REEF KRISP-I Orion FICKS

1

10

100

L M H P T A L M H P T A L M H P T A L M H P T A L M H P T A

R152 R101 Dnet VGG Mnet

No
rm

ali
ze

d T
hr

ou
gh

pu
t

Fico

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
Resnet152 Resnet101 Densenet201 VGG MobilenetV2

D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D1 D2 D3 D4 D5
Resnet152 Resnet101 Densenet201 VGG MobilenetV2

Figure 3: Performance comparison when applying four homo-models

ML Apps Dominant Kernels Neutral Kernels In-sensitive Kernels
Resnet152 46.20% 11.84% 41.97%
Resnet101 42.73% 14.79% 42.48%

Densenet201 29.08% 29.05% 41.87%
VGG 76.01% 0 23.99%

MobilenetV2 22.01% 39.44% 38.55%

Table 1: Offline profiling about the kernels in the ML applications


