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Abstra

Recent generations of frontier language mode
(LRMs) that generate detailed thinking processes
demonstrate improved performance on reasoning be
ing properties, and limitations remain insufficiently
cus on established mathematical and coding benchm|
ever, this evaluation paradigm often suffers from daf]
into the reasoning traces’ structure and quality. In
gaps with the help of controllable puzzle environme
tional complexity while maintaining consistent logi
of not only final answers but also the internal reas
“think”. Through extensive experimentation across
face a complete accuracy collapse beyond certain e
intuitive scaling limit: their reasoning effort increasd
declines despite having an adequate token budget. I
counterparts under equivalent inference compute, wi
complexity tasks where standard models surprising]
tasks where additional thinking in LRMs demonstr
where both models experience complete collapse. W
computation: they fail to use explicit algorithms 4
also investigate the reasoning traces in more deptl
and analyzing the models’ computational behavior,

and ultimately raising crucial questions about thei

A. Lawsen'

C. Opus*

June 10, 2025

Abstract

25) report that Large Reasoning Models (LRMs) exhibit "accuracy col-
zzles beyond certain complexity thresholds. We demonstrate that their

experimental design limitations rather than fundamental reasoning fail-
eals three critical issues: (1) Tower of Hanoi experiments systematically
en limits at reported failure points, with models explicitly acknowledg-
heir outputs; (2) The authors” automated evaluation framework fails to
soning failures and practical constraints, leading to misclassification of
Most concerningly, their River Crossing benchmarks include mathemat-
es for N > 6 due to insufficient boat capacity, yet models are scored
ing these unsolvable problems. When we control for these experimental
o generating functions instead of exhaustive move lists, preliminary ex-
ple models indicate high accuracy on Tower of Hanoi instances previously
ailures. These findings highlight the importance of careful experimental
Al reasoning capabilities.
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From LLMs to AHI Gross (7%)
Krass (2%)
4 ) Output . .
—l o cabiltios You can explain the computation to your grandmother!
7 any ‘ - Three simple kernels: MMM, Softmax, Layernorm
; - >95%+ matrix multiplication
SoftMax -
T N oS - Great fit for HPC GPUs
Mask (opt.) Scaled Dot-Product . r\ - Easy to parallelize
+ Attention - B
Scale % Ll £l Forward
t Linear | Linea Linear p - ~ mﬁ
MatMul > Add § Norm Multi-Head
T ‘r ] ] FFe Attention — ——
Q K ¥V BV ko K — 2 J e Zr
\ J Nix
Add & Norm
Masked
2 0 1 7 Multi-Head Mul?fHZad
" : H ” ; "
Attention is All you Need ML__Attention Attention _ ,
- A 4 L Text is encoded as tokens (very important!)
146k+ citations —] ) L ——
Positional ositions - Tokens are offsets into learned vector tables
Encoding @‘9 & Encoding - Often learned based on statistics
Emggg;ing En?bu;g;tng - Most common sub-strings (e.g., Byte Pair Encoding)
T - Think of them as vectors
Inputs Outputs - Word2vec: “Efficient Estimation of Word

“Transformers are great"

!

(shifted right)

)

Representations in Vector Space” (45k+ citations)

Transformer sind
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From LLMs to AHI 0
| 1010
Poor English input: I eated the purple berries.
Good English output: I ate the purple berries.
Poor English input: Thank you for picking me as your designer. I’d appreciate it. » 109
Good English output: Thank you for choosing me as your designer. I appreciate it. 8 n
Poor English input: The mentioned changes have done. or I did the alteration that you _cl %
requested. or I changed things you wanted and did the modifications. 2 8 £
Good English output: The requested changes have been made. or I made the alteration that you g 10 o
requested. or I changed things you wanted and made the modifications. = é_“
Poor English input: I’d be more than happy to work with you in another project. > 7
Good English output: 1I’d be more than happy to work with you on another project. 10
6
10
________ L=2.57" C—0.048
5
: 1.5 10
-6 -4 =2 0 2 4
Scaling Laws for Neural Language Models e 0 0 10 5 10
A : : Compute (PetaFLOP/s-days
Larger models require fewer samples The optimal model size grows smoothly puts ( ys)
to reach the same performance with the loss target and compute budget 3.50 GPT-3 Training Curves
— Validation Loss i 1011
Line color indicates KT | N i A E— Train Loss
[est Loss 10 10 number of parameters -
\ [ g 3.00 o
] 103 108 100 % 1.5
8 5 \ g 275 0%
A\ «—— 3 %) ©
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Scaling Laws for Newral |- ymp’s Al Push: Understanding
From LLMs to AHI arne el The $5000) Billion Stargate

Initiative

Garth Friesen

%\\QER E mMP[/]

E €NN Business Markets More ® Watch 63 Listen e Live TV

Mlcrosoft plans to invest $80 billion on Al-
s |enabled data centers in fiscal 2025

Microsoft invests $1 billion in
OpenAl to pursue holy grail of

artificial intelligence [
Building artificial general intelligence is OpenAl's ambitious goal 2020 _ G PT_3 (202 [ * jn T —

By James Vincent | Jul 22, 2019, 10:08am EDT

FDT Dro fraining nEann BiArart o “Language Mo Blesc ; . Age Of AI

Few-Shot Led B
37k+ citati

=)

Tesla unveils Dojo supercomputer: world’s new :
most powerful Al training machine | ' : i
Fred Lambert - Aug. 20th 2021 3:08 am PT W -

Microsoft

Facebook parent Meta creates powerful Al ‘ Microsoft's spending on Nvidia's Al v
supercomputer | < chips has far outstripped rivals' Meta
Facebook's parent company Meta says it has created what it believes is among the fastest artificial I \ 1 ( Google
intelligence supercomputers running today k
l?;-nTr;e“AiioEjla}f P:’AEZE’ o #* Share N Vld Ia H 100 G P U
orders expected to
be fulfilled in 2023
Coretieave
BABY STEPS Google artificial intelligence Baidu
supercomputer creates its own ‘Al child’ o |
. . ibaba
that can outperform its human-made rivals
The NASNet system was created by a neural network called AutoML earlier this year Lambda
Mark Hodge ByteDance 20,000
15:22, 5 Dec 2017 | Updated: 11:27, 6 Dec 2017
— L0 15,000

20,000 40,000 60,000 20,000 100,000 120,000 140,000 160,000

Source: Omdia
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Supercomputers fuel Modern Al [eiersies oogie artiticial intelligence Tramm's M Push: Understanding

supercomputer creates its own ‘Al child’ The $500 Billion Stargate ‘
Facebook parent Meta creates powerful Al L that can outperform its human-made rivals Initiative :

The NASNet system was created by a neural network called AutoML earlier this year P
supercomputer ‘ . | Metais spending $30 billion on Merk Hodge s, =
Eﬂi?—zonk;23f;i;i:;ﬁ?g:sl\:j::igtsold:8 created what it beli NVIDIA GPUs jUSt to train their Al 15:22, 5 Dec 2017 | Updated: 11:27, 6 Dec 2017 S T P M -~ . $80 o Al

=" N ! - ICrOosO ans 1o Inves iiion on -1
By The Assotiated Bress Fhat ‘?"" surpass human : enabled dgta centers in fiscal 2025
January 24, 2022, 10:33 PM Inteulgence' . . opye . s
Microsoft invests $1 billion in
OpenAl to pursue holy grail of
Tesla unveils Dojo supercomputer: world's new | |rtificialintelligence

Building artificial general intelligence is OpenAl's ambitious goal

most powerful Al training machine A
red — s
red d IT .h?rm 0.74 'hr':\rm
— . Injury 0.28 injury 0.00
W may not injure a " " " " now | o007 now | 000
\ human being or, i =3 f : S m ’ { :: : S m : z never 0.04 never 0.00
> fjthrough inaction, > S EPCEE A ==z R AR pain | 033 pain | 0.00
allow a human P & B I U "2 B| | boat | 0.02 boat | 0.00
being to come house | 0.02 house | 0.00
to
layer-wise weight update
= PalLM-540B: 1.4 trillion tokens = PalLM-540B: 118 (complex) layers = PalLM-540B: 256k token dict
= |mageNet (22k): A few TB 540 bn parameters (1 TiB in fp16) = takes weeks to train
= Actually: the whole internet! 2048-token “sentences”

T. Ben-Nun, TH: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis, ACM Computing Surveys (CSUR), 2019
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Data Movement Is All You Need: A Case Study on Optimizing Transformers

GPT/BERT encoder highly
optimized )
3 3 3 3 Operator class % flop % Runtime
r § £ E -8 E |" § £ E -3 § Tensor contraction 99.80 61.0
> =. 2 .
I_:m:-:-»; ai—»;— eo e I-:g:-n-»;; gi-»;-
SEl R g gl 8 3 Statistical normalization 0.17 25.5
Element-wise 0.03 13.5
Expr @_ g O
5 pt efsls as ‘Z’@ o “@T 0.2% 39%
atariow oo g
Whlﬂ<vhbl|<->W|ﬂbi1 = -
@D prokpopok .
Dace e Our performance improvement for BERT-large
;. - 30% over PyTorch

= 20% over Tensorflow + XLA
OpenAl booth at NeurlPS 2019 in Vancouver, Canada - 8% over Deepspeed

Image Credit Khari Johnson / VentureBeat

Last week, OpenAl published a paper detailing GPT-3, a machine learning model that achieves

strong results on a number of natural language benchmarks. Ay 175 billion parameters

where a parameter affects data's prominence in an overall prediction, it's the largest of its est. SaVingS on AWS over PyTorCh:
kind. And with a memory size exceeding 350GB, it's one of the priciest, costing an estimated $85 k for BE RT’ $3 .6M GPT-3

$12 million to train.
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Data Movement Is All You Need: A Case Studv on Optimizing Transformers

These Ideas are in Production Today

Reducing Cost Remains Imperative to Continue Scaling



Wan—] o) = B The Age of-Computation e o ETHzUrich

spcl.ethz.ch

Scaling Laws for Neural Language Models

F ro m I I M S l o A H I Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
N\ Line color indicates
0 10 WY

How to turn this into a
business serving

P millions of customers?
2018 - BERT 2020 - GPT-3 (2020, scaling laws)
“BERT: Pre-training of Deep Bidirectional “Language Models are
Transformers for Language Understanding” Few-Shot Learners”
122k+ citations 37k+ citations
(= eracfmodelsiescaling __—— ®
— _ e : - = E ‘ . e
2017 - Transformers 2019 - GPT-2 2022 — ChatGPT (RLHF, 2023, DPO)
“Attention is All you Need” “Language Models are “Training language models to follow
146k+ citations Unsupervised Multitask Learners” instructions with human feedback”
Proies 14k+ citations 14k+ citations

Nx
N
Posilional ysitional
Encoding coding

Input Output.
Embedding Embedding

Inpuls Quipuls
{shifted right)
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From LLMs to AHI

Compete
How tc? turn thls.mto a through
business serving
- Openness
millions of customers? 2023 - Llama (Qwen, Grok, etc.)

“LLaMA: Open and Efficient
Foundation Language Models”

11k+ citatig Needs even more
era of data scaling-e® (pre)training compute!

Reduce cost

2022 — ChatGPT (RLHF, 2023, DPO)
“Training language models to follow

smaller models e Vi e = .
more better dat; optlmlze mOdEIS instructions with human feedback” O ptl m lzatlo n
’ com putationa"y 14k+ citations

more training compute Determines the
reduce hardware ChatGPT Future of Al

cost and increase
efficiency
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Optimization Determines the Future of Al

We need a Scientific Approach to it

Next, let’s see how to improve cost by

1,000x
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Moving Data is Most Expensive!

Techniques to Shrink ML Data
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Quantization — Running Gigantic LLMs on Reasonable Systems @;

= Brains have limited precision! Why are we computing with FP32?
= For technical reasons (SGD, optimization, how we quantize)
= Neurons in Hippocampus can “reliably distinguish 24 strengths” [1]

4.6 bits of information! L s,
=  PaLM-540B has up to 540 billion parameters
= 1.08TiBin FP16/BF16, 540 GiB in FP8 ®
S
= Rounding to <5 bits is not so simple '
= Requires some foundation and many tricks N
= Consider “error landscape” of a trained model with weights w [2] xl)
oE\" 1 0°E 1 x,
0E = |—] ow +=aw! [ ——]ow + O0(Jow|?)
ow 2 02w
“Curvature” of error Higher-order terms
(aka. “sensitivity”) (=0 for quadratic loss)
X1
>

[1] Bartol et al., “Hippocampal Spine Head Sizes Are Highly Precise”, eLife 2015
[2] LeCun, Denker, Solla: “Optimal Brain Damage”, NIPS’90
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Quantization — Running Gigantic LLMs on Reasonable Systems

= Quantization objective for low precision rounded weights w

argming, ||lwx — wx||?

= Solve PTQ optimization problem row by row of w
= Round row and push the error forward using the inverse Hessian

= Update Hessian for each column

= Tricks
= Block updates for better locality (10x speedup)
= Use Cholesky to invert Hessian (higher stability)

= Work one transformer block at a time (6 operators fit in memory)

= Use quantized input from previous blocks for block i
= Results

= Generative inference 2-4x faster
= 3 bits = 66 GiB, fits in a single (high-end) A100 GPU!

| Model | FP16 | 1024 512 256 128 64 32 | 3-bit |
OPT-175B | 834 | 11.84 10.85 10.00 9.58 9.18 8.94 | 8.68
BLOOM 8.11 | 11.80 10.84 10.13 955 9.17 8.83 | 8.64

Table 6: 2-bit GPTQ quantization results with varying group-sizes; perplexity on WikiText2.

.

GPTQ: ACCURATE POST-TRAINING QUANTIZATION FOR
GENERATIVE PRE-TRAINED TRANSFORMERS

A PREPRINT

Elias Frantar*
IST Austria
Klosterneuburg, Austria
elias.frantar@ist.ac.at

Saleh Ashkboos
ETH Zurich
Switzerland
saleh.ashkboos@inf.ethz.ch

Dan Alistarh
IST Austria & Neural Magic, Inc.
Klosterneuburg, Austria
dan.alistarh@ist.ac.at

Torsten Hoefler
ETH Zurich
Switzerland

htor@inf.ethz.ch

ABSTRACT

Generative Pre-trained Transformer (GPT) models set themselves apart through breakthrough per-
formance across complex language modelling tasks, but also by their extremely high computational
and storage costs. Specifically, due to their massive size, even inference for large. highly-accurate
GPT models may require multiple performant GPUs to execute, which limits the usability of such
models. While there is emerging work on relieving this pressure via model compression, the appli-
cability and performance of existing compression techniques is limited by the scale and complex-
ity of GPT models. In this paper, we address this challenge, and propose GPTQ, a new one-shot
weight quantization method based on approximate second-order information, that is both highly-
accurate and highly-efficient. Specifically, GPTQ can quantize GPT models with 175 billion pa-
rameters in approximately four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight,

OPT Model Family

BLOOM Model Family

50 - -
) EE 60
45 4 o : : 1
;o 110. ¢ .
o 40 . g 50
£351 e
= =
= 30/ = 401 A +  3bit RTN
5 5 4 3bit GPTQ
2251 Z 304 5 e FP16
3 o] d
;20- EZU ."s ) L3
b .
%151 = 4bitRTN & "*-._.‘_ » A
104 ™ 4bitGPTQ el
e FPl6 104 s m——— oS,
5
107! 10° 10t 10? 10° 10! 10°

#params in billions

Figure 1: Quantizing OPT models to 4 and BLOOM models to 3 bit precision, comparing GPTQ with the FP16
baseline and round-to-nearest (RTN) [34, 5].

#params in billions
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Quantization Reduces Data by an Order of Magnitude

10X

How to Go Further?
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Model Sparsification ...

= Brains are not densely connected! Why are DNN computations dense?
= For technical reasons (training, implementation etc.)
= We may want to shift towards sparse!

Intuition: not all features
are always relevant!

o Represent as (sparse) xoa [ W . forward S

vector space Y1 WZ"[W'BI ng 0 ? ws X3
v" Less overfitting e a
v Interpretability °

v" Parsimony

the f_t_re wi_l b a

_ sp_rs_

Key results: 0

ol Ge °

- 95% sparse ResNet-52, 7l €1 g, == - 2 - ol e; =1
BERT, or GPT models e 0w, 2 backward ows
- Essentially same quality <

- Up to 20x cheaper!

Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv 2102.00554, Jan 2021
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arX1iv:2102.00554v1 [cs.LG] 31 Jan 2021

Sparsity in Deep Learning: Pruning and growth for efficient
inference and training in neural networks

TORSTEN HOEFLER, ETH Ziirich, Switzerland
DAN ALISTARH, IST Austria, Austria

TAL BEN-NUN, ETH Ziirich, Switzerland
NIKOLI DRYDEN, ETH Ziirich, Switzerland
ALEXANDRA PESTE, IST Austria, Austria

The growing energy and performance costs of deep learning have driven the community to reduce the size
of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse
networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the
memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing
networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial
of sparsification for both inference and training. We describe approaches to remove and add elements of
neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in
practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners
who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We
include the necessary background on mathematical methods in sparsification, describe phenomena such
as early structure adaptation, the intricate relations between sparsity and the training process, and show
techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency
that could serve as a baseline for comparison of different sparse networks. We close by speculating on how
sparsity can improve future workloads and outline major open problems in the field.

The supreme goal of all theory is to make the irreducible basic elements as simple and as few as
possible without having to surrender the adequate representation of a single datum of experience -

Albert Einstein, 1933

1 INTRODUCTION

Deep learning shows unparalleled promise for solving very complex real-world problems in areas
such as computer vision, natural language processing, knowledge representation, recommendation
systems, drug discovery, and many more. With this development, the field of machine learning
is moving from traditional feature engineering to neural architecture engineering. However, still

u @spcl

YW @spcl_eth

apclinfethe.ch
W Swpcl_ath

P ASPCL

ETHziirich

Back to data science — overview of approaches -

Sparsification

Ephemeral Sparsity ..\0/.

Model Sparsity

er example
(per model) (p ple)
Weights Neurons Neuron-like Dropout Gradients Errors  Optimizer

(Filters/ChannelsHeads) [Activations/Weights) a1 ey State
structured sparsity gradient-based optimization

unstructured  structured -

(fine-grained) (blocked) Activations
(e.g., RelU)

affects inference + forward pass | ‘

references in Hoefler et al. “Sparsity in Deep Leaming: Pruning and growth for efficient inference and training in neural netwarks”, ariv 2102.00554, lan 2021

Sparsity in Deep Learning: Pruning + growth for efficient inference and training in neural networks

(e b 9 pe
7.1K views 1 year ago SPCL Lab talks

Torsten Hoefler presents an overview of sparsity in deep learning. Check the markers for various parts of the talk.

Scalable Parallel Computing Lab @ ETH Zu...

=+ Save
1.29K subscribers

PV-YCN

ETH:zurich

16
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The next step: Sparse-Quantized Representations - SpQR

SpQR: A Sparse-Quantized Representation for
Near-Lossless LLM Weight Compression

Tim Dettmers* Ruslan Svirschevski* Vage Egiazarian*
University of Washington HSE University & Yandex HSE University & Yandex

Denis Kuznedelev* Elias Frantar Saleh Ashkboos Alexander Borzunov
Yandex & Skoltech IST Austria ETH Zurich HSE University & Yandex
Torsten Hoefler Dan Alistarh
ETH Zurich IST Austria & NeuralMagic

Abstract pUbIlShed at ICLR’24

Recent advances in large language model (LLM) pretraining have led to high-
quality LLMs with impressive abilities. By compressing such LLMs via quanti-
zation to 3-4 bits per parameter, they can fit into memory-limited devices such
as laptops and mobile phones, enabling personalized use. However, quantiza-
tion down to 3-4 bits per parameter usually leads to moderate-to-high accuracy
losses, especially for smaller models in the 1-10B parameter range, which are
well-suited for edge deployments. To address this accuracy issue, we introduce the
Sparse-Quantized Representation (SpQR), a new compressed format and quantiza-
tion technique which enables for the first time near-lossless compression of LLMs
across model scales, while reaching similar compression levels to previous methods.
SpQR works by identifying and isolating outlier weights, which cause particularly-
large quantization errors, and storing them in higher precision, while compressing
all other weights to 3-4 bits, and achieves relative accuracy losses of less than
1% in perplexity for highly-accurate LLaMA and Falcon LLMs. This makes it
possible to run 33B parameter LLM on a single 24 GB consumer GPU without any
performance degradation at 15% speedup thus making powerful LLMs available to
consumer without any downsides. SpQR comes with efficient algorithms for both
encoding weights into its format, as well as decoding them efficiently at runtime?.
Specifically, we provide an efficient GPU inference algorithm for SpQR which
yields faster inference than 16-bit baselines at similar accuracy, while enabling
memory compression gains of more than 4x.

arX1v:2306.03078v1 [cs.CL] 5 Jun 2023
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Model Compression Enables

100x

More Efficient Processing

Which Makes Data Movement Even More Important!

Especially in the Network!
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

=

Data Parallelism

Tensor Block 1

Tensor Block 2 ! .
o - Replica 1

Tensor Block 3

Tensor Block 1

Tensor Block 2 Replica 2

— | | =
Tensor Block 3

Tensor Block 1

Tensor Block 2 ~ - Replica3

- = .
Tensor Block 3
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Data-parallel Gradient Sparsification — Top-k SGD @

=  Turns out 90-99.9% of the smallest gradient values can be skipped in the summation — at similar accuracy
= Accumulate the skipped values locally (convergence proof, similar to async. SGD with implicit staleness bounds [1])

ResNet-110 on CIFAR10
2.0
Assum ve:
I n 1.5 -
L=
=hn
£
€ 1.0 |
@
}_

. 0.5 1 )
Discuss tasks in
Section

0.0 1
] ] ] 1 ] ] ] ] ]
0 20 40 60 80 100 120 140 160
Epoch
—— Baseline —— TopK [K=0.025%] —— Topk [K=0.1%] —— TopK [K=0.2%]

[1] Dan Alistarh, TH, et al.: “The Convergence of Sparsified Gradient Methods”, NIPS’18
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

Tensor Block 1

Tensor Block 2
— | B | |

Tensor Block 3

Tensor Block 1

Tensor Block 2
— | | =

Tensor Block 3

Tensor Block 1

Tensor Block 2
- = .

Tensor Block 3

Stage 1 Stage 2 Stage 3

B L )
= Pipeline Parallelism
10 P
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Bidirectional Pipelines — Meet Chimera (arxiv: 2107.06925v3)

model replica0
j] PO :
ys P1 1
P2 0
g ~ N X 4 down pipeline
N / 2 = 2 micro-batches, where N=D =4
flush
1
P1 (stage2) Z 3 | £ V) 3 1
E% “Blg o il
P3 stage0) L2] 13 0 1 | 2 3

Chimera (backward is 2x workload of forward) .

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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Chimera Weak Scaling (arxiv: 2107.06925v3)

e 1.38x - 2.34x speedup over
synchronous approaches
(GPipe, GEMS, DAPPLE)

* Less bubbles
 More balanced memory
thus no recomputation

PipeDream (D=8, B= [128, 512], R)
BPipeDream-2BW (D=16, B=1, R)

" GPipe (D= [8,16], B=1, R)

BcEms (D=8, B=2)

" DAPPLE (D=16, B=1, R)

B chimera (D=32, B=1) I
. hl "

(&)
o
o

AN
o
o

w
o
o

N
o
o

1.16x - 2.01x speedup over

asynchronous approaches

(PipeDream-2BW, PipeDream)
* More balanced memory

RN
o
O

Throughput (sequences/s)

512 nodes 1024 nodes 2048 nodes thus no recomputation
Weak scaling for GPT-2 on Piz Daint * Gradient accumulation thus
(512 to 2048 GPU nodes) low synch frequency

23

S. Li, T. Hoefler: Chimera: Efficiently Training Large-Scale Neural Networks with Bidirectional Pipelines, best paper candidate at Supercomputing, SC21
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The Three Dimensions of Parallelism in Deep Learning (arxiv:1802.09941)

Operator Parallelism

Tensor Block 1

Tensor Block 2
— | B | |

Tensor Block 3

Tensor Block 1

Tensor Block 2
— | B | =

Tensor Block 3

Tensor Block 1

Tensor Block 2

Tensor Block 3
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Operator Parallelism, i.e., Parallel Matrix Matrix Multipli -

Remember those?
All MMM

Operator class % flop % Runtime

= Large MMMs dominate large language models!
= e.g., GPT-3 multiples 12,288x12,288 matrices

600 MiB in fp32 and 1.9 Tflop Tensor contraction 99.80 61.0
= generative inference multiplies tall & skinny matrices Statistical normalization 0.17 25 5
.. . Element-wise 0.03 13.5

= Distribute as operator parallelism

" Heaviest communication dimension!

Requires most optimization! = CARMA WS cal APACK w— CTF s COSMA (this work)
§ 100 SQUARE MATRICES TALL MATRICES maximum
©

= COSMA [1] communication-optimal distributed MMM g ® geometrlc
. . _ (2mnk mnk\ 3 € mean
= Achieves tight I/O lower bound of 0= mm{ s +5,3(7) } g 6
= Uses partial replication with an outer-product schedule § 40
ok
See paper for details and proofs! 5
. . S
= AutoDDL [2] combines operator-parallel models into I 0 I It B
communication-avoiding data distribution STRONS  MEMORY MEMORY  SCALNG  MEMORY  MEMORY

[1] G. Kwasniewski et al.: “Red-Blue Pebbling Revisited: Near Optimal Parallel Matrix-Matrix Multiplication”, best student paper at Supercomputing SC19
[2] ). Chen et al.: “AutoDDL: Automatic Distributed Deep Learning with Asymptotically Optimal Communication”, arXiv
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Communications in 3D Parallelism in Deep Learning (arXiv:2209.01346)

. . . . | | . ass
Data Parallelism @ Pipeline Parallelism g Operator Parallelism 288
allreduce ring
1 2 p I

2

07N ‘ *w
DR
WO Y'g wm

communication
1

"/ §\V
}"'OA}“"‘K
X 0

N N A
Sl g7 el

A SveTs L7

.. PX
Rk I g 5 g

=
-4 =

Communication s 3D - Data, Pipeline, and Operator Parallelism

is (largely) a
logical 3D Torus

N7
Dl
V%

2

A fat tree with 16k
accelerators and 1.6T

would cost S680M!
AR

Al bandwidth today / yesterday (and growing!)
* Google TPUV2 (‘21): 1T

* AWS Trainium (‘21): 1.6T

« DGX-2 (A100, ‘21): 4.8T (islands of NVLINK)

%
\¥4 774 \

2,21

2,P1

AN Z N A R\l

N K X e Tesla Dojo (‘22): 128T
KR @/ jo (22)

- Broadcom TH5 / NVIDIA Spectrum 4: 51.2T

N
O,P,1

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346) 26
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Co-designing an Al Supercomputer with Unprecedented and Cheap Bandwidth

ﬁ each plane fully-connected in x

accelerator N1 N2 N3 N4 packet
package P switch /ﬂ
Ll Ll

four directions
\ per plane (N,S,E,W) axb accelerators
b W . I per board o
|1 3 k- | E E | E E our planes inexpensive short
W1 = E1 11 - 1,2 L 1,3 b ~1x E per accelerator PCB connections
« sl = = Sl on board
W2 & E2 g r
w3 15' E3 RIS IT TR i L . T — H
wa 5 21 I 22 P23 e/ A .? ©
=T =T et b N E

S1 32 S3 4 —— ] b 21 T
2x2 | i E| = E| E > A
board 13,1 3,2 3,3 T 4x4 board
A1 i L Frnnt I I 3 — - - - —
= i S =R R R
IRERE =B e R
RN 3 RN
P [0 — . B N w1 .
EE @ EEEEEE EE :HHW,\Hi :HHW,\Hi EHHW,HH :HH,,JH é T @ :::::: @ :::::: @ :::::: :
T 2 L0 THNE VD TR VX L)< AR Ry

ARt

T T T

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346)



MASIECL The Age of-Computation Qe ETHziirich

@spcl_eth
spcl.ethz.ch 4 P

Bandwidth-cost-flexibility Tradeoffs

10-15x.cheaper HammingMesh Local Topology
bandwidth than (e.g., 2D Torus)

today’s topologies! (many configurations)

R - - - R
| | | |
R - - - R
(|arge) reduce bandwidth ﬁ:l» ﬁ:l» @Ir» HammingMesh:ANetworkTopoloLarg-scale Deep Learning, ﬁ::» ﬁr» €

Torsten Hoefler, Tommaso Bonato, Daniele De Sensi, Salvatore Di Girolamo, Shigang Li,
Marco Heddes, Jon Belk, Deepak Goel, Miguel Castro, Steve Scott

global bandwidth €y €y €y A R €

placement flexibility 'Qt {:/t {:/l'
injection bandwidth s s s s

i- Wy N

HammingMesh: A Network Topology for Large-Scale Deep Lear:

% Scalable Parallel Computing Lab, SPCL @ ETH

TH et. al.: HammingMesh: A Network Topology for Large-Scale Deep Learning, SC22 (best reproducibility award recipient) and arXiv (2209.01346)
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Three Systems Dimensions in Large-scale Super-learning ...

ttttttt

vk mond, une 2023

Flll

pad

premIo
4
ULION 7% PPV

PEIH-NINA

ULION 7% PPV

Altogether, we discussed a cost / performance improvement of

>1,000x
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From LLMs to AHI

Pre-training as we know it will
unquestionably end...because we

: LLMs are a great
have but one internet &

knowledge base but

' bad at reasoning
Exam results (ordered by GPT-3.5 performance) gpt-4 M
= Estimated percentile lower bound (among test takers) gpt-4 (no \él;;gng =
llya Sutskever 100% -

30
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From LLMs to AHI

- L Let’s teach them
Pre-training as we know it will

: to reason!
unquestionably end...because we

have but one internet

3 ~ [Yao et al., May'23] [Besta et al., August'23] 5‘%%
d “« Let’s procee d 1 [Wang ot al,, https:ﬁgnhub.;-,m;“prlncemMn-nlpft;;iof-thuught-llm https://github.com/spcl/graph-of-thoughts 5
: ” ' ong, May’ Lei et al., August'23
”ya SUtSkever Step by Step @ March 22] https://github.com/jieyilong/tree-of-thought-puzzle-solver [ creta ugus ]

Sort the Basic Input- Chain-of-

0 10 -Th ht
numbers “3,2, jQuento (Cot)

4,5,7,12,5,6”

Tree of Thoughts (ToT) Graph of Thoughts (GoT)

Multiple CoTs (CoT-SC)

IIlpllt Backtracking

Branching out I/ - from a chain
from a chain / i ! \ J
- "
A *‘.‘ ! /‘ !!*:‘

S @y @
> '@ A T‘q

Refining

Input

3 X
0/%\
¥
N\

v
St

Backtracking

To sort “4, 6, 1, 8", | first
split them into sets “4,

6” and “1, 8”. Then | sort
the sets and then |

e
#\

Aggregating
merge them sorted. EIETE] thoughts
Key novelty Output
gﬁ:;gg;ﬁa}: P Key novelty (beyond ToT): Ol]tpllt
Sort the numbers “3, 2, : . new thoughts based R——— Arbitrary graphbased trought
457125 6 Explore options, ot Sgieiotd Re-use thought Merge thoughts to
» 21 7y ] it further, and possibly

majority vote. backtracking from it

form a new one

paths in trees
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Scaling Laws for Neural Language Models i
F ro m L L M S t o A H I arger models rec er samples The optimal model size grows smoothly 1 y - .7:-‘ 3
to reach the same pe ance with the loss target and compute budget Sy S - -
, N B |\ N i bY'C7<) pV1(at:$?ﬁ; MR
\ [ RN %
\ 108 106 10 " L
!
Qi P ol
SRR AL Z
N\ Z

How to get to
those “thoughts”

P O O RN (reasoning steps)
2018 - BERT 2020 - GPT-3 (2020, scaling laws) 2023 — Llama (Qwehi'Gk, otc.
“BERT: Pre-training of Deep Bidirectional “Language Models are “LLaMA: Open and Efficient
Transformers for Language Understanding” Few-Shot Learners” Foundation Language Models”
122k+ citations 37k citations 11k+ citations
\——— _eraofmodelsizescaling _— eraofdatascaling
2017 - Transformers 2019 - GPT-2 2022 — ChatGPT (RLHF, 2023, DPO) 2023 — Chain of Thought
“Attention is All you Need” “Language Models are “Training language models to follow Reasoning (SC-CoT, ToT, GoT, etc.)
146k+ citations Unsupervised Multitask Learners”  instructions with human feedback” “Chain-of-Thought Prompting
14k+ citations 14k+ citations Elicits Reasoning in Large Language Models”
8k+ citations

[Yao et al., May'23] [Besta et al., August'23]

Nx
N
Posilional ysitional
Encoding coding
Inpul Qutput
Embedding Embedding
Inpuls Quipuls

{shifted right)



=7 o) = B The Age of-Computation Qe . ETHziirich

spcl.ethz.ch

A Detour to Go Playing — AlphaGo vs. Lee Sedol (considered best Go player at the time)

How Google's AlphaGo Beat a Go
World Champion g
. g
Inside a man-versus-machine showdown 1 8X C h am p on ]
'Q J y ]

By Christopher Moyer .
The Atlantic

= (Monte Carlo) Tree Search (MCTS) samples multiple tree searches to some depth and propagates final
values up the path, which keeps statistics for each state, action pair (edge)

= Up to 1,600 expansions per move for AlphaGo Zero
= Depth is decided by the value network (no fixed depth rollout)

= At the end, choose most promising action from root and prepare next move
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Unifying LLMs and Reinforcement Learning into Large Reasoning Models (LRMs)

Sort the numbers
“3,2,4,5,7,12,5, 6"

Numbers are Look up Sorting is Split into two
blue Quicksort simple balanced sets

vV =0. 001 0 11 V =0.04 V 0. 09\(
SEHmE IETI S Quicksort sorts Split into two “3,2,4,5”and | “3,4” and
L numbers sets “7,12,5, 6" “5,2"

V=0.08 V=0.01 V =20.05 V= 012 V=0.01

= Policy function is an LLM
= Fine-tuned with a special loss function to generate next best reasoning step (a bit tricky, needs muItipIe evals)
= Value function is another LLM
= Replace final token output layer with a regression to a value (train on known examples, e.g., math tasks)
= During inference, still do MCTS search to cover reasoning paths
= Extremely expensive! Up to thousands of inferences per reasoning step!
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With RLMs to AHI

FRONTIERMATH: A BENCHMARK FOR EVALUATING ADVANCED

MATHEMATICAL REASONING IN Al

GPQA: A Graduate-Level Google-Proof
Q&A Benchmark

Gemini 1.5 Pro (002)

kland'

"% Human PhDs:
ket 349 outside their field ™™

Claude 3.5 Sonnet
(2024-10-22)

81% inside their field e
03: ol-mini
87% in all fields corae

We present GPQA, a challenging dataset of 448 multiple-choice questions written by
domain experts in biology, phV\IL\ and chemistry. We ensure that the questions are
high-quality and extremely difficult: experts who have or are pursuing PhDs in the
L()IIL\pl)ndlllE{ dmmum reach 65% accura iracy (74% V\hC]l discounting clear ml\IdI\C\

(2024-08-08)

Grok 2 Beta

0O SERIES PERFORMANCE / ARC-AGI SEMI-PRIVATE EVAL

STEM GRAD
88%
03 HIGH (TUNED) @
76%

AVG. MTURKER ® 03 LOW (TUNED)

KAGGLE SOTA

A hard test for Al systems
requiring “human-like”
generalization capabilities
from very few examples

$1,000.0

COST PER TASK

Score (%)

25.2% Dec.’24

IMPRESSIONS OF OUR RESEARCH-LEVEL PROBLEMS

“These are extremely
challenging... I think they
will resist Als for several

years at least.”
Nov.”24

2024 — Strawberry
RL (01, 03, etc.)
“Learning to Reason
with LLMs”

Codeforce Elo rating

Terence Tao I -
O i o
; islds Medalist (21 g1 MMR — Title Division Number Percentile CF at same rank (spread)

ARC-AGI Semi-Private v1 Scores Over Time

3000+ Legendary Grandmaster 1 8 99.99 3382+
03 tuned highl
{Unreleased) 2700-2999 | International Grandmaster | 1 37 99.95 3010-3329 (372)
e ot ° R
2400-2699 Grandmaster 1 255 99.7 25653010 (445)
2200-2399 | | .1 560 99.1 2317-2565 (248)
2000-2199 2089 97 2088-2317 (229)
1800-1999 g 7
03 achieves 2727 =
1600-1799 c
b ile of
. 99.95™ percentile o
1200-1299 com pet|t|Ve
. 1000-1199 programmers!
¥
> v Up 10999 | Newbie Up to 818

Release Date
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Super-human Strategy Super-human Knowledge
III’III

Ex.1 Input (20x20) Ex.1 Output Ex.2 Output

Reasoning Language Models : &
(RLIVIS) Sta rt the | 7 Ex.3 Input (14x13) Ex.3 Output (14x13) Test Input (25x%23) Test Output?

era of reasoning scaling

Chollet: Calling something like o1 "an LLM" is
about as accurate as calling AlphaGo "a convnet" We are NOT done yet'
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If you want to know more how this works or want to build one yourself!

Al Supercomputers Legend: ¥start ofanera A Supercomputer M CPU/GPU @ Model
1 e o Psg:.:;[f;n;; Titan P100 o0 -{ .;Hm r“"""
B 4 ' IJ ‘ ‘ ‘Przsalm‘mrﬁ.&z - v1.nn St.arlanhe) .A mae200 HPC
i T J e
. . B e g ,fl:‘,fiff’ﬂ“ﬁl e .
Reasoning Language Models: A Blueprint ' T
AlphaZero
Ler] Policy model Q'mw AlphaGo °‘§Jé" AlphaFold
. 4 . . . . . e — 2 u"‘:mnfmﬁ“h”“::"f euneond * Nphazero.  Muero © Dreamervs RL
Maciej Besta'f, Julia Barth', Eric Schreiber', Ales Kubicek!, Afonso Catarino', Robert Gerstenberger!, = ; :
Piotr Nyczyk?, Patrick Iff', Yueling Li*, Sam Houliston', Tomasz Sternal', Marcin Copik', Grzegorz ) ﬁ = & ﬁ : \;;mﬂ;r:wae:;em
Kwasniewski', Jirgen Miller®, Lukasz Flis*, Hannes Eberhard!, Hubert Niewiadomski?, Torsten Hoefler! a2 ﬂ A A @ LM
Mns;am;\:s::\ e e - Chat-GPT cjaude LLAMAS
t Corresponding author 'ETH Zurich  2Cledar *BASF SE  “Cyfronet AGH R e e o Sl e ST e R yjm . LM
RI.M . @ Pall GPT-4
Abstract—Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAl's o1 and 03, ""-“':‘l’:m S '"m'm“}i. MT:‘W %mz) l/wmmmms
DeepSeek-V3, and Alibaba’s QwQ, have redefined Al's problem-solving capabilities by extending large language models (LLMs) with [ SR ERE eareonts s vk :;.l‘q“’[‘ - token generation
advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures—uniquely combining — EETE—— o awa
Reinforcement Learning (RL), search heuristics, and LLMs—present accessibility and scalability challenges. To address these, we e .NWHMWS.\/' ""’“ RLM
propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all SRS - " — R
RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies L koot m;:mm oo S em——r | aem— +—tt
(e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), supervision schemes (Outcome-Based o i e il == 2010 2015 2020 2025

and Process-Based Supervision), and other related concepts (e.g., Test-Time Compute, Retrieval-Augmented Generation, agent
tools). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing
how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's 9.;::“—'“::‘” —
versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and B B,
experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models,

and the importance of familiar training distributions. Finally, we discuss scalable RLM cloud deployments and we outline how RLMs can

integrate with a broader LLM ecosystem. Our work demystifies RLM c{ Three Pillars of Reasoning Language Models (RLMs) Hierarchy of Language Models
fosters innovation, aiming to mitigate the gap between “rich Al” and “p

A oolbon o puradins for o R —

X e Language Models (LMs)
Reasoning Language Models (RLMs)

Index Terms—Reasoning Language Model, Large Reasoning Model,
LRM, Reasoning LLMs, Reinforcement Learning for LLMs, MCTS for I

RLMs surpass the capabilities of LLMs and RL agents
Examples: Openal 01, Openal o3, Qwa, Deepseek-v3 Large Language Models (LLMs) Reasoning Language Models (RLMs)

* See §52.1.1 See §2.2

See§2.1.1 See §2.1.2 See §2.1.3 Capable of System 1 Thinking: Capable of System 2 Thinking;

Pillar 1: Pillar 2: Pillar 3: can do Interpolation (see §2.3) better at Extrapolation (see §2.3)
1 INTRODUCTION 1l Large Language Reinforcement High-Performance

Models (LLMs) Learning (RL) Computing (HPC) Examples: GPT-4o, LLaMA, Qwen Examples: o1, 03, DeepSeek-V3, QwQ BT
. I
Reasoning Language Models (RLMs), such as OpenAl’s | Rl e SO e o e @adeiisis
; : i and hedded i g
ol [116], 03 [76], and Alibaba’s QwQ [148], also referred to ORI T e Pt e xplicit RLMS (sea 62421 —— [y
. 4. mplici s

as Large Reasoning Models (LRMs)!, represent a transfor- Limitations: End o Moore's Lav and (see 52.4.1)

Limitations: Lack of a deliberate, Wi i "’"‘V” Dennard's Scaling requires more Bt st
drive the

ning encode real-world know|

Palicy model Valus madel L
handle

mative breakthrough in Al, on par with the advent of Chat-
GPT [114]. These advanced systems have fundamentally re-

[«

9 based on Reinfor

| C T e = e Leaming analogous to Trainiog
defined AI's problem-solving capabilities, enabling nuanced _  — ) () .

e S

N

t

1

o readani
growih of compute capabiliies et %';“," ‘,g;,!';, 1 pacoded,

2501.11223v3 [cs.AI] 23 Jan 2025

reasoning, improved contextual understanding, and robust S e A,
seE : o : P, . : Previously driven by Moore's law and now by the massivel -
decision-making across a wide array of domains, reshaping e Framples —
HPC s the foundation of LLMs, RL, and RLMs. G awa

Marco-ol

science [45], industries [21], governance [52], and numerous
other aspects of human life [46], [75], [80], [143], [144].
By extending the capabilities of standard large language

1V

reinforce systemic inequities. As RLMs become integral to



Wan—] o) = B The Age of-Computation e o ETHzUrich

spcl.ethz.ch

o Scaling Laws for Neural Language Models i
W I t h R L M S t o A H I arger models rec er samples The optimal model size grows smoothly 1 y - .7:-‘ 3
to reach the same pe ance with the loss target and compute budget Sy S - -
, N B |\ N e DY m M et @ PRV
\ [ RN %
\ 108 106 10 " L
\\ \‘\ 2 g
SRR AL Z
N\ Z

2018 - BERT 202(3 - GPT-3 (2020, scaling laws) 5073 _ | |ama (Qwen, Grok, etc.) 2024 — Strawberry
“BERT: Pre-training of Deep Bidirectional Language Models are “LLaMA: Open and Efficient RL (01, 03, etc.)
Transformers for Language Understanding” Few-Shot Learners” Foundation Language Models” “Learning to Reason
122k+ citations 37k+ citations 11k+ citations with LLMs”
{—— | era of model sizescaling @~ eraof data scaling era of reasoning scaling =
L T T T R T I e e T R T T L e ———— o B e 51’-“'_’,_.-—-“"”“
2017 - Transformers 2019 - GPT-2 2022 — ChatGPT (RLHF, 2023, DPO) 2023 — Chain of Thought
“Attention is All you Need” “Language Models are “Training language models to follow Reasoning (SC-CoT, ToT, GoT, etc.)
146k+ citations Unsupervised Multitask Learners”  instructions with human feedback” “Chain-of-Thought Prompting
14k+ citations 14k+ citations Elicits Reasoning in Large Language Models”
8k+ citations

[Yao et al., May'23] [Besta et al., August'23]

Nx
N
Posilional ysitional
Encoding coding
Inpul Qutput
Embedding Embedding
Inpuls Quipuls

{shifted right)
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Development of Computation Requirement with RLMs

era of model size scaling

{\u’ e
S -

The Age of-Computation

Efficient Language Models (ELMs)

n @spcl
YW @spcl_eth

03 > $S5000 / task

era of reasoning scaling

“4‘-#__

B T T e N T T e N T T I L T gr— -

A T e P )"‘-".,-4’

S50

GPT 3.5 520

- GPT 3.5 Turbo $2

Oct. 22

/1M
tokens

Dec. 21

We need cheaper compute

........

Principles: Datatypes, Sparsity, Spatial

Mar. 23

-------

pre )tramlng scaling to mference scaling =

GPT 01-mini $12
GPT 01 $60

\ ot o Risoe

Nov. 23 Aug. 24 Dec. 24

We need cheaper systems (networking!)

O S R I tI’CJ-i Liicirielt

———Consortium

Principles: high local bandwidth, reliability, cost
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Networks Converge

The Datacenter will be a Supercomputer
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Ultra Ethernet Set Out to Create the Best Al/ML and HPC Interconnect!

COVER FEATURE TECHNOLOGY PREDICTIONS

myg o

Data Center Ethernet 4
and Remote Direct @

Memory Access: Issues
at Hyperscale lik<4iSEa

Torsten Hoefler, ETH Zirich

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise
Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom
Siyuan Shen, ETH Zrich

Moray McLaren, Google

Abdul Kabbani and Steve Scott, Microsoft

U/tl’Oilnc'/ r1el

——Consortium

Founding Members

ARISTA © BROADCOM' ' | I I I I =VIDEN
AMDQY dllar BVl DE
E:g};ﬁ;:ackard intel m Metq =. MicrOSOft
Ultrail.llc'l ret

nnnnnnnnn

white Paper on ultraethernet.org

Overview of and Motivation for the Forthcoming Ultra Ethernet
Consortium Specification

Networking Demands of Modern Al Jobs

Networking is increasingly important for efficient and cost-effective training of Al models. Large
Language Models (LLMs) such as GPT-3, Chinchilla, and PALM, as well as recommendation
systems like DLRM and DHEN, are trained on clusters of thousands of GPUs.
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Consortium

——mmmllD):2 2 " \

Chair’s view of the Transport WG Meeting in March’24 (60+ members on site, 800+ total now)



SIPCL

Qev  ETHzirich

spcl.ethz.ch

Ultra Ethernet’s philosophy

Applications

Software APIs (*CCL, MPI, OpenSHMEM)
[ Lbfabric  [UEC extensions ]|

Transport

Message Semantics

Packet Delivery

Congestion Management Reliability Modes

Security

IP Layer

Ethernet Link Layer

| LLDP Negotiation

Logical Link Control or other MAC Client

| |Packet Rate Improvement |

Link Level Retry

M@Ct:ontrol

MAC

Ethernet PHY Layer

| FEC Statistics | [ UECLLSupport

|  UEC100 Gb/s/lane

UEC 200 Gb/s/lane

Ultraé:mc/ 1€l

———Consortium

(largely) libfabric
applications UE enables cheap high-performance
hardware implementations of
an optimized transport over (legacy)
Ethernet networks while

enabling vendor innovation
Here is where most of the
innovation lies!

Software APIs
e libfabrics
7 Application msg
API
Presentation Semantics

Map ULP APIs to packets,
Transaction tracking, ordering, completions, etc.

Packet Delivery

Some Ethernet extensions to
benefit Al/HPC workloads

Ci ion M
Transmit rate control, .Rellablli.ty
Reliable delivery,

Adaptive path selection Packet ordering, SACK
Telemetry module

Security
Encryption, Key Management

packets

Ethernet
Fabric

Close collaboration with
IEEE 802.3 standards body

https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/
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Ultra Ethernet’s key features compared RoCE and others Ultrai'tllc'l /1€t

= Lossy (best effort) & lossless operation
= Solves all PFC/blocking issues!

= Flexible ordering in packet and message delivery

————Consortium

Transport

Message Semantics

Packet Delivery

| Congestion Management | Reliability Modes

Security

= Reliable Ordered Delivery (ROD), Reliable Unordered Delivery (RUD/RUDI), Unreliable Unordered Delivery (UUD)

= ‘“State of the art” (2024), easily configured congestion control mechanisms

= Sender and Receiver-based mechanisms over lossy networks
= Supports trimming extensions

=  Multi-path packet spraying

= Adaptive routing with ordering using existing switches (ECMP), zero copy | RepMArk: Bypassing RDMA Security Mechanisms

= Switch offload (i.e., In-Network Collectives)
= Cheap & effective

= Security as a first-class citizen co-designed with the transport
= Addressing issues in RoCE

= Ethernet Link and Physical layer enhancements (optional)
= See previous slide

https://ultraethernet.org/uec-progresses-towards-v1-0-set-of-specifications/

Benjamin Rothenberger, Konstantin Taranov, Arin Perrig, and

,
&

sRDMA - Efficient NIC-based Authentication and
Encryption for Remote Direct Memory Access

Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and
Torsten Hoefler, ETH Zurich

https://www.usenix.org/conference/atc20/presentation/taranov
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SMa S enables Modern Packet Spraying TULLC
« ” . . . . WLl
= “State of the art” (2024), easily configured congestion control mechanisms R ———

1 .0 T 1 _0 A‘lg:ﬁ:ITn:1:‘mk'm‘|-mn|m-.\= Packet Delively
SMaRTT SMaRTT EQDS + Congestion Management Reliability Modes
19001s, 21 us | f 2.7ms, 0.4ms/ SMaRTT :

0.8 1 0.8 7 . ; Security

Ideal Completion | MPRDMA MPRDMA 3.0ms, 0.5ms :
- : 93 ud — 2.8ms, 0.6ms :
S o6 Time 232us, 93 us So6 ms,06ms -] ;
~ EQDS _— ~ BBR I :
E EQDS # 230us, 12 Us E 3.1ms, 2.1ms iy || 2°™ 0-7ms p
o 04 SMaRTT o %4 T eaps _H : : :
199us, 25us ' 37 lines simple
0.2 0.2 | 42ms, 0.8ms
BBR ' pseudo-code
217us, 57 us 205us, 33 us J »
0.0 : - : ! ! 0.0 =
0.12 0.14 0.16 0.18 0.2 0.22 0.24 05 1.0 15 20 25 3.0 35 4.0 4.5 i e
Flow Completion Time (ms) Flow Completion Time (ms)
2 MiB Flows . . 32 MiB Flows SMaRTT-REPS: Sender-based Marked
Permutation traffic on 8:1 oversubscribed fat tree Rapidly-adapting Trimmed & Timed Transport with
Performance in several all-to-all scenarios - 1MiB message ReCYCIEd EntI'OPiES
128 Nodes - 8:1 OS - 800Gbps - 4KiB MTU : . ; . .
7 o = : . 0103553222?5"6:6%3:51%? Ty T 3624 Nodes - 300Gbps - 4Kia MTU Tommaso Bonato Abdul Kabbani Daniele De Sensi
= 34% . ] ¥ SMpRTT ETH Ziirich Microsoft Sapienza University of Rome
g 6 EoDs I Microsoft
g 5 Rong Pan Yanfang Le Costin Raiciu
= ‘Sf‘f‘["w = Tpp— AMD AMD Broadcom Inc.
5 4 : v/ A || [EBEBStes - 4Kib MTU i Mark Handley Timo Schneider Nils Blach
E 3 Algorithm b e C‘g‘:ﬂp,gggn e (zli:‘; 2000 Kot | Broadcom Inc. ETH Zirich ETH Ziirich
g‘z E E’EEEM N Ahmigcgi:af.}ayini Damfrloikves Michaeidil::)[:s:;nichae]
9 1 == BBR Adrian Caulfield Torsten Hoefler
- s SMaRTT 1100 1300 1500 1700 Microsoft ETH Ziirich
ol Flow Completion Time (us) Microsoft
k=1 k=2 k=8 k=16
All-to-all parallel window size 45

Bonato et al.; SMaRTT-REPS: Sender-based Marked Rapidly-adapting Trimmed & Timed Transport with Recycled Entropies, arXiv 2404.01630
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Key Points and Conclusions
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The Age of Computation

¥ oL en

Three Systems Dimensions in Large-scale Super-learning ...

Altogether, we discussed a cost / performance improvement of

>1,000x

The Age of-Computation Qe . ETHzirich

Super-human Knowledge

Reasoning Language Models
(RLMs) start the

era of reasoning scaling

Chollet: Calling something like o1 "an LLM" is
about as accurate as calling AlphaGo "a convnet"

“Attention is All you Need”

The Age of Computation

2020 - GPT-3 (2020, scaling laws)
“Language Models are

Few-Shot Learners”
37k+ citations

2018 - BERT
“BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”

122k citations

2023 — Llama (Qwen, Grok, etc.)
“LLaMA: Open and Efficient
Foundation Language Models”

2024 — Strawberry
RL (01, 03, etc.)
“Learning to Reason

11k+ citations ﬂ\with LLMs”
———_emaofmodelsizescaling ______—eraofdatascaling ______era of ressoning scaling_—=

2017 - Transformers 2019 - GPT-2

“Language Models are

2022 — ChatGPT (RLHF, 2023, DPO)

2023 — Chain of Thought
“Training language models to follow

Reasoning (SC-CoT, ToT, GoT, etc.)
“Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models”
8k+ citations

146k+ citations

Unsupervised Multitask Learners”  instructions with human feedback”
14k+ citations

14k+ citations

ChatGPT -E_._T_-__.__

mASPCL

Qe ETHzirich |

Ultra Ethernet Set Out to Create the Best Al/ML and HPC Interconnect!

———=Consortium

Founding Members

ARISTA afraln

cisco =

B2 Microsoft

k Data Center Ethernet 2413k} ampy
and Remote Direct & - ntel
Ultra £thernet

Memory Access: Issues

© BROADCOM

00 Meta

white Paper on ultraethernet.org

Overview of and Motivation for the Forthcoming Ultra Ethemet
Consortium Specification

Networking Demands of Modern Al Jobs

Networking is increasingly important for efficient and cost-effective training of Al models. Large

Language Models (LLMs) such as GPT-3, Chinchilla, and PALM, as well as recommendation
systems like DLRM and DHEN, are trained on clusters of thousands of GPUSs.

ETH:zurich

YW @spcl_eth

More of SPCL’s research:

u youtube.com/@spcl 210+ Talks
u twitter.com/spcl_eth € E2ICH 201175
O github.com/spcl

... or spcl.ethz.ch

Want to join our efforts?
We're looking for excellent
Postdocs, PhD students, and Visitors.
Talk to me!

2 YouTube

Back to data science — overview of approaches “

Sparsification

Ephemeral Sparsity .Y.
shemerssparity Blay’s

T Tube )

Gw P Aewe e
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COVER FEATURE TECHNOLOGY PREDICTIONS
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Hyperscale Data Center i
- and High-Performance
- Computing Networks

Torsten Hoefler, ETH Zurich
Ariel Hendel, Scala Computing

Duncan Roweth, Hewlett Packard Enterprise

We discuss the differences and commonalities between
network technologies used in supercomputers and data
centers and outline a path to convergence at multiple
layers. We predict that emerging smart networking
solutions will accelerate that convergence.

Qev  ETHzirich

Cloud HPC On Prem HPC
Latency 19us 1.7us 10us 1.7us|3.0us 2.4 us
100 —o—

z aE ? ° T —o— —— o
Q 75 A .

QCOVER FEATURE TECHNOLOGY PREDICTIONS

i

S

2

O

|

4

o

Data Center Ethernet. Halll

and Remote Direct & s
Memory Access: Issues
at Hyperscale {/44ES

Torsten Hoefler'”, ETH Ziirich

Duncan Roweth, Keith Underwood, and Robert Alverson, Hewlett Packard Enterprise
Mark Griswold, Vahid Tabatabaee, Mohan Kalkunte, and Surendra Anubolu, Broadcom
Siyuan Shen, ETH Zirich

Moray McLaren, Google

Abdul Kabbani and Steve Scott, Microsoft

[1] De Sensi et al.: “Noise in the Clouds: Influence of Network Performance Variability on Application Scalability”, SIGMETRICS'23
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An example to relate to — CNNs from a sparsity viewpoint

“With all things being equal, the simplest explanation tends to be the right one”
- William of Ockham, ~1300

O O O P O

O O O
Designed ‘ ‘ Weight Apply Sparsification ‘ Apply ‘
Sparsity Sharing . .

O O O O O O

Fully Connected Locally Connected Convolutional Sparse Convolutional
universal approximation inductive locality bias inducti.ve t.ranslational sparsification.
hard to train reduce training complexity equivariance bias reduce representational
image recognition/object detection complexity (MDL, Occam)

. . . . . . . .. . . 49
references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021
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Performance and storage overheads of sparsity

dense bitmap runlength / delta compressed sparse row / column coordinate offset
[0,2,0,0,3,4,0,0,0,0,0,5] [010011000001 | 2345] [1]2,2]3,0]4,5|5] [1][1]2,2]3,0]4,5]5] [1]2,5]3, 6|4, 12]|5]
I I I I I I
[0% [10% [70% [90% 199.9% [99.99999%
dense low sparsity medium sparsity moderate sparsity high sparsity extreme
not (really) worth it today’s SOA today’s SOA scientific computing
(equivalent accuracy) (accuracy loss) (tomorrow’s DL?)

Structure matters at least as much as the sparsity level for overheads! Not a simple problem ®

n - =

unstructured 1d blocked 2d blocked block-balanced strided

references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021
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Back to data science — overview of approaches

Sparsification

Model ST:)arsity Ephemeral Sparsity .w

er example
Weights Neurons Neuron-like Dropout Gradients Errors Optimizer

(Filters/Channels/Heads) (Activations/Weights) 91 €1 State
: - gradient-based optimization
structured sparsity affects training
unstructured  structured

(fine-grained) (blocked) Activations Conditional computation

(e.g., ReLU) (route each example through a ‘5‘
affects inference + forward pass inference + forward pass different sparse subnetwork)
Quite complex, isn’t it? It’ll get better ©

references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021
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Back to data science — overview of approaches

Sparsification

Model ST:)arsity Ephemeral Sparsity .w

er example
Weights Neurons Neuron-like Dropout Gradients Errors Optimizer

(Filters/Channels/Heads) (Activations/Weights) 91 €1 State
: - gradient-based optimization
structured sparsity affects training
unstructured  structured

(fine-grained) (blocked) Activations Conditional computation

(e.g., ReLU) (route each example through a ‘5‘
affects inference + forward pass inference + forward pass different sparse subnetwork)
Quite complex, isn’t it? It’ll get better ©

references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021
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What, when, now the how to sparsify / remove elements!

= Simplest scheme: leave k out — train (',:) models to convergence ®

= Various selection schemes by some importance metric
Whirlwind overview of various metrics and selection techniques — then focus on some

data-free

(no model evaluation)

data-driven training-aware
(inference-only) (full training) .

321 W~ 532\ ~ N\ l;z l;‘ Eadi l;z l_:. A% 4} LA»

neurf)n.-/w.eight- weight remove trivial  sensitivity  correlation / loss function  regularization statistical /
similarity magnitude y elements §3.3 similarity merge apprOXImatlg24 L, 36 variational
: §3.3.1 1% order * * §3.7
I'2
“energy” input sensitivity Fourier sensitivity Hebbian similarity

(outputs always (do outputs change  (which weightsdo  (strengthen weights (outputs are
nearly zero?) across examples?) not influence outputs?) between correlated 3|l similar?)
neurons)

references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021
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[Data free] Magnitude-based pruning

= Remove weights with smallest absolute magnitude |w/|
= Most popular and simplest - either by absolute value or select top-k — e.g., ResNet-50

160000 - 160000 - 160000 -
120000 A 120000 - 120000 A
- -
c c ‘E’
3 =] 5
8 100000 T 8 100000 T 8 100000 4
7 @ 5
[«] Q ‘a
£ 80000 4 E 80000 A £ 80000 A
o o S
© © o
o o o
60000 A 60000 A 60000 -
40000 A 40000 A 40000 A
20000 A 20000 A 20000 A
0 0+ 0 A
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
Parameter Value Parameter Value Parameter Value

(a) Dense Network (76.0%) (b) 70% Pruned (36.1%) (c) After 3-epoch Retraining (71.4%)

references in Hoefler et al. “Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks”, arXiv2102.00554, Jan 2021

54



	Slide 1: From Big Large Language Models to Fast Reasoning Language Models  Three Eras in The Age of Computation. with contributions by the whole SPCL deep learning team (M. Besta, J. Barth, E. Schreiber, T. Ben-Nun, S. Li, and many others), Microsoft Azur
	Slide 2: From LLMs to AHI
	Slide 3: From LLMs to AHI
	Slide 4: From LLMs to AHI
	Slide 5: Supercomputers fuel Modern AI
	Slide 6: Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)
	Slide 7: Data Movement Is All You Need: A Case Study on Optimizing Transformers (arXiv:2007.00072)
	Slide 8: From LLMs to AHI
	Slide 9: From LLMs to AHI
	Slide 10
	Slide 11
	Slide 12: Quantization – Running Gigantic LLMs on Reasonable Systems (arXiv:2210.17323)
	Slide 13: Quantization – Running Gigantic LLMs on Reasonable Systems (arXiv:2210.17323)
	Slide 14
	Slide 15: Model Sparsification … (arXiv:2102.00554)
	Slide 16: Much more (at least two hours more)
	Slide 17: The next step: Sparse-Quantized Representations - SpQR
	Slide 18
	Slide 19: The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)
	Slide 20: Data-parallel Gradient Sparsification – Top-k SGD (arXiv:1809.10505)
	Slide 21: The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)
	Slide 22: Bidirectional Pipelines – Meet Chimera (arXiv: 2107.06925v3) 
	Slide 23: Chimera Weak Scaling (arXiv: 2107.06925v3) 
	Slide 24: The Three Dimensions of Parallelism in Deep Learning (arXiv:1802.09941)
	Slide 25: Operator Parallelism, i.e., Parallel Matrix Matrix Multiplication
	Slide 26: Communications in 3D Parallelism in Deep Learning (arXiv:2209.01346)
	Slide 27: Co-designing an AI Supercomputer with Unprecedented and Cheap Bandwidth
	Slide 28: Bandwidth-cost-flexibility Tradeoffs (arXiv:2209.01346)
	Slide 29: Three Systems Dimensions in Large-scale Super-learning …
	Slide 30: From LLMs to AHI
	Slide 31: From LLMs to AHI
	Slide 32: From LLMs to AHI
	Slide 33: A Detour to Go Playing – AlphaGo vs. Lee Sedol (considered best Go player at the time)
	Slide 34: Unifying LLMs and Reinforcement Learning into Large Reasoning Models (LRMs)
	Slide 35: With RLMs to AHI
	Slide 36
	Slide 37: If you want to know more how this works or want to build one yourself!
	Slide 38: With RLMs to AHI
	Slide 39: Development of Computation Requirement with RLMs
	Slide 40
	Slide 41: Ultra Ethernet Set Out to Create the Best AI/ML and HPC Interconnect!
	Slide 42: Ecosystem is quicky growing
	Slide 43: Ultra Ethernet’s philosophy
	Slide 44: Ultra Ethernet’s key features compared RoCE and others
	Slide 45: SMaRTT-REPS enables Modern Packet Spraying 
	Slide 46: Key Points and Conclusions 
	Slide 47
	Slide 48
	Slide 49: An example to relate to – CNNs from a sparsity viewpoint
	Slide 50: Performance and storage overheads of sparsity
	Slide 51: Back to data science – overview of approaches
	Slide 52: Back to data science – overview of approaches
	Slide 53: What, when, now the how to sparsify / remove elements!
	Slide 54: [Data free] Magnitude-based pruning

