ArmoniK: Simplifying Ac-
cess to Performance at

Scale
DP2E-AI 2025

Aneo
Jérome Gurhem
June 23, 2025

Outline

Can We Simplify Access to Performance at Scale?

ArmoniK: A User-Friendly Trade-Off

Towards Al with ArmoniK and JAX

The Right Tool for the Right Job

ArmoniK: Simplifying Access to Performance at Scale

Section 1

Can We Simplify Access to Performance at Scale?

ArmoniK: Simplifying Access to Performance at Scale

HPC: At the Cutting Edge of Three Disciplines

Hardware

Scientific Problem to Solve

ArmoniK: Simplifying Access to Performance at Scale

The Decline of the Scientific Polymath

» 17th-18th centuries: Scientists like Newton and Leibniz contributed across disciplines —
science was relatively unified.

> 19th century: Rapid growth of disciplines (e.g., chemistry, biology, physics); first signs of
specialization.

» 20th century: Explosion of subfields and technical complexity; solo mastery becomes impossible.

> Today: Even within a single field (e.g., Al, genetics), experts specialize narrowly — cross-field
comprehension is rare.

> No one scientist can read or understand all scientific publications.

» Applicable to HPC : It is increasingly difficult to master all its fields.

Jéréme Gurhem ArmoniK: Simplifying Access to Performance at Scale

Building Interfaces Between Disciplines

Hardware

Tensor Corgs

Scientific Problem to Solve

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale

Current Interfaces

» Hardware/Software
> Programming Languages: C, C++, Python, Fortran, etc.
> Compilers: GCC, Intel, LLVM, etc.
> Software/Scientific Problem
> Libraries: BLAS, LAPACK, FFTW, TensorFlow, PyTorch, etc.
> Frameworks: MPI, OpenMP, CUDA, OpenCL, Kokkos, etc.
» Hardware/Scientific Problem

> Al: AWS Inferentia, Google TPU, Nvidia Tensor Cores, etc.
> Dedicated Accelerators: FPGAs, ASICs, etc.

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 6

Current Interfaces

» Hardware/Software

> Programming Languages: C, C++, Python, Fortran, etc.
> Compilers: GCC, Intel, LLVM, etc.

> Software/Scientific Problem

> Libraries: BLAS, LAPACK, FFTW, TensorFlow, PyTorch, etc.
> Frameworks: MPI, OpenMP, CUDA, OpenCL, Kokkos, etc.

» Hardware/Scientific Problem

> Al: AWS Inferentia, Google TPU, Nvidia Tensor Cores, etc.
> Dedicated Accelerators: FPGAs, ASICs, etc.

» Yes | For the trade-off they were designed for.
> Still, they need deep expertise to be used effectively.

Jéréme Gurhem ArmoniK: Simplifying Access to Performance at Scale

Why Look Beyond Current Interfaces?

» Complexity of heterogeneous systems is growing rapidly.
> Experts are required to bridge hardware/software/application gaps.

> Scientific applications need:
> Scalability without re-architecting code.
> Transparent access to diverse computing resources.
> Efficient resource utilization and orchestration.
» Current solutions lack:
> Flexibility across architectures.
> Seamless integration and automation.
> User-friendly interfaces for scientists and engineers.

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 7

Why Look Beyond Current Interfaces?

» Complexity of heterogeneous systems is growing rapidly.
> Experts are required to bridge hardware/software/application gaps.

> Scientific applications need:
> Scalability without re-architecting code.
> Transparent access to diverse computing resources.
> Efficient resource utilization and orchestration.

» Current solutions lack:

> Flexibility across architectures.
> Seamless integration and automation.
» User-friendly interfaces for scientists and engineers.

Can we simplify access to performance at scale?

Jéréome Gurhem ArmoniK: Simplifying Access to Performance at Scale

Section 2

ArmoniK: A User-Friendly Trade-Off

ArmoniK: Simplifying Access to Performance at Scale

ArmoniK's Goals

» Simplify the development of distributed applications
> Provide a user-friendly interface for scientists and engineers
> Adress the challenges of HPC without requiring deep expertise in parallel programming

> Getting reasonable performances

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 9

ArmoniK: a Hybrid Framework

Computational kernels

(Chew) (o) (790

ArmoniK

Data management App App App

Advanced features

Jobs management

Jobs\Resources mapping Batch scheduler Batch scheduler

Resources management [Resource manager

Computational kernels: User computations

Data management: Reads, Writes, Communications between processes
Advanced features: Overlapping, load balancing

Jobs management: Job queues, resource allocation, job lifecycle

Jobs / Resources mapping: Determine job execution on which machines

vVvYvyvVvyYyvyy

Resources management: Machine pool update, node addition or removal

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 10

Task-based Programming in ArmoniK

Paradigm focusing on the decomposition of complex operations into smaller tasks

» Expression of complex data-driven dependencies
» ArmoniK's distributed scheduler responsible for:
> Task distribution and load balancing
> Dependency resolution
> Tasks execution
> Data management (overlapping, prefetching, and checkpointing)

from pymonik import Pymonik, Task

if __name__
with Pymonik(endpoint="localhost:5001", partition="pymonik"):
my_task = Task(lambda a, b: atb, func_name="add")
result = my_task.invoke(l, 2).wait().get()
print(f"Result of add task: {result}") # 3

== "__main__":

Jéréme Gurhem ArmoniK: Simplifying Access to Performance at Scale

ArmoniK Programming Model

Jérdme Gurhem

Task Graph: Bipartite DAG whose node sets
are tasks and data

Task node: Single-node computation
(possibly multi-threaded) taking one or several
data inputs and outputting one or several data

Data node: Immutable piece of data
depending on only one task at most
Dependencies: Dependencies between tasks
are expressed as data dependencies
Dynamic: The graph may not be entirely
known in advance (tasks can append tasks
and replace edges with subgraphs)

T~ .

|
\
N\

- o« -
Task2 }

ArmoniK: Simplifying Access to Performance at Scale

Data 6

Dynamic Graph

Dependency graph is not fully known when scheduling starts.

» Task dependencies not known before submission

» Submissions can happen anytime

» Tasks can submit new tasks

» Tasks can delegate the production of their output to their new tasks

from pymonik import Pymonik, task

Qtask
def add_one(a:int) -> int:
return a + 1

Qtask
def add(a: int, b: int) -> int:
if a <= 0:

return b
b_plus_one = add_one.invoke(b)

return add.invoke(a-1, b_plus_one, delegate=True)

Jéréme Gurhem

ArmoniK: Simplifying Access to Performance at Scale

Dynamic Graph Example

(a) (b) Created by
task 1
O@/
@
[Available data 48y

[Unavailable data
O Ready task

© Pending task

O Completed task

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 14

Computations/Comm

Responsibility for data allocation, transfer, and storage between computational operations

» ArmoniK is responsible for tasks input and output data management

> Allows for automatic communication + scheduling/task execution overlapping

» Automatic Uncoordinated Checkpointing

User Function 1

User Function 2

[]
i i Tnput
Function as a Service |vunmion1| P |

Computation

| |
|°“‘nutupload||funmionz|]|

Computation Output upload |

Overlapped

Function as a Service |iunction 1

ArmoniK

Computation

[User Function 1
el Computation [output uptoad]
e — User Function 2
function 2 [Computation Output upload ||
[il [User Function 1 | Ompumpluad|

| function 1 | download |

Scheduling|
function 2

Input
download

User Function 2

I Computation

Output upload |

function 3

SChedu[mgIlnput download

User Function 3

Computation

Output upload

Jéréome Gurhem

ArmoniK: Simplifying Access to Performance at Scale

ArmoniK Built-in Features

\4

Jérdme Gurhem

Open Source: https://github.com/aneoconsulting/ArmoniK
Observability: Extensive GUIs, CLIs, monitoring APIs, metrics, logs, and traces
Portability: Effort to transfer an application from one environment to another

> Officially supported languages: C#, C++, Python, Rust, Java, and JavaScript
> Tasks on different architectures (x86, ARM, GPU, Linux, Windows), applications, environments

Malleability: Dynamic reconfiguration of the number of allocated resources during execution
without interruption

Resource Sharing: Share resources between applications to maximize resource utilization
Modularity: Modules can be swapped without modifying ArmoniK's code to suit user needs and
constraints

Production Ready: Designed to be used in production environments, with a focus on stability,
security, scalability, and maintainability

» Used by our clients in their critical systems
> Drives our needs for validation and guarantees, monitoring, stability

ArmoniK: Simplifying Access to Performance at Scale 16

https://github.com/aneoconsulting/ArmoniK

Jérdme Gurhem

Fault Tolerance

» Works without interruption even when one or more nodes fail
> Allow support for preemptible computing resources
> Automatic and efficient task retry on failure

» Each curve represents a percentage of preempted instances

Time (minutes)

ArmoniK: Simplifying Access to Performance at Scale

'g i — 0%]
2 ol 12.5%1
fg 50%
= 100% |
=

E r J
= 50 - -
&]
o] 4
£ A |
= 0 L ..\.]

20

Throughput Scalability

» Indep : independent tasks workload
» Graph : nested fork-join workload

» 1-second long tasks
» Empty input/output data

- -

g 100 | ottt . | -
g L [T T]
g 75 | 100 N ———— ek
% S0 F —— Ideal £ _ _
% 75 _ ~®- Indep 95p L . T‘_
£ * Graph 0 1000 2000]
T w0 000 1500 2000

Jérdme Gurhem

Number of computing vCPUs

ArmoniK: Simplifying Access to Performance at Scale

Low Round-trip Latency

» Cumulative distribution functions (CDFs) of round-trip latency

» Batched submissions of 1, 10, and 100 independent zero-work tasks

Jérdme Gurhem

—~ 100
§ [
o]

%75
O C
S 50
E L
S

° 25
[aW

)

-
0

.............
" .

3 — l-task batch
/| ‘]
a ;| i -==10-task batch]
. Y 100-task batch]
P B N S S S L

100 200 300 400

Round-trip latency (milliseconds)

ArmoniK: Simplifying Access to Performance at Scale

Section 3

Towards Al with ArmoniK and JAX

ArmoniK: Simplifying Access to Performance at Scale

JAX: A Modern Tool for Scientific Computing and Al

JAX is a Python library that enables high-performance scientific computing by combining:

>

»
>
>
>

Jérdme Gurhem

NumPy-Compatible API for familiar, concise numerical code
Automatic differentiation for optimization and ML
Just-In-Time (JIT) compilation for accelerating performance
Seamless CPU, GPU, and TPU execution

Composable Transformations Combine transformations easily: e.g., jit(grad(f)),
vmap (grad (f)).

ArmoniK: Simplifying Access to Performance at Scale

XLA: The Compiler Behind the Speed

vVvyvyVvVvyy

Jérdme Gurhem

XLA (Accelerated Linear Algebra) is a domain-specific compiler developed by Google.

It transforms JAX Python functions into highly optimized machine code.

Performs operation fusion, memory planning, and hardware-specific optimizations.

Enables JAX to deliver hardware-level performance from high-level Python code.
Produces efficient code for CPUs, GPUs, and TPUs.

ArmoniK: Simplifying Access to Performance at Scale

N
[N

Impact for Scientists and Engineers

| 2
>
>
| 2
>

Jérdme Gurhem

Write portable, optimized code without low-level programming
Accelerate Al models, PDE solvers, and simulation kernels
Integrate HPC workflows with modern ML toolchains

Reduces boilerplate in high-performance computing

Enables reproducible, portable, and efficient scientific models

ArmoniK: Simplifying Access to Performance at Scale

ArmoniK + JAX: A Powerful Combination

» ArmoniK provides a distributed task scheduler and data management layer.

v

JAX offers high-performance numerical computing capabilities.
» Together, they enable:

> Scalable, fault-tolerant Al and scientific computing
» Automatic data management and task scheduling
> Efficient execution on heterogeneous hardware

> Ideal for large-scale Al training, scientific simulations, and data analysis.

v

Supports dynamic task graphs and overlapping computations.

> Provides a user-friendly interface for scientists and engineers.

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale

What It Looks Like

> Ideal for large-scale Al training, scientific simulations, and data analysis.

from pymonik import Pymonik, task
from jax import numpy as jnp

Qtask
def cholesky(A):
return jnp.linalg.cholesky(A)
if __name__ == "__main__":
x = jnp.array([[2., 1.]1,[1., 2.1]1)
with Pymonik(endpoint="localhost:5001", partition="pymonik",
< environment={"pip":["jax"]1}):
L = cholesky.invoke(x) .wait().get()
print(jnp.allclose(x, L @ L.T))

» Use GPUs instead of CPUs, just swap dependencies and partition.

with Pymonik(endpoint="localhost:5001", partition="pymonik-gpu",
< environment={"pip":["jax[gpul"1}):

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale

Section 4

The Right Tool for the Right Job

ArmoniK: Simplifying Access to Performance at Scale

The Right Tool for the Right Job

vVvyVvyVvVvyyy

v

No single scientist can master all fields in HPC.

Interfaces between disciplines are crucial.

And the trade-off between performance and usability is essential.

However, the current trade-off is speed-oriented, requiring deep expertise.

ArmoniK aims to shift this trade-off towards usability while maintaining reasonable performance.
It allows scientists to focus on their research without needing deep expertise in parallel
programming.

ArmoniK is not a replacement for existing HPC tools but a complementary framework that
simplifies the development of distributed applications.

We are looking for more use cases: https://github.com/aneoconsulting/ArmoniK

Jérdme Gurhem

ArmoniK: Simplifying Access to Performance at Scale

https://github.com/aneoconsulting/ArmoniK

Questions and Discussions

» What missing interoperability layers (software, standard, or abstraction) would most accelerate
convergence between traditional HPC linear algebra workflows and today's extreme-scale Al
workloads?

» There are tentatives between hardware and software (Kokkos, JAX, etc.), but what about
applications that does not fit in these frameworks?

> In companies, we see that over time, organizational interfaces tends to match the interfaces in the
IT systems.

> We still have a lot of work to build scientific and technology interfaces that allows users to
cooperate without a deep expertise in all HPC/Al-related fields.

> Looking ahead to 2030, do you expect the principal bottleneck for extreme-scale Al to be data,
algorithms, resilience or energy, and how does that prediction shape your research priorities
today?
> Energy: It will probably be an issue in Europe, probably less true elsewhere.
> It will be a trade-off between the three others.
> Given the different developments in architecture processors for Al and “computational science”,
do you think we'll see a convergence or divergence of roadmaps?
» HPC will use whatever will be available on the market, as in the last 30 years.

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale 28

Thank you for your attention!

Do you have any questions?

Jérdme Gurhem ArmoniK: Simplifying Access to Performance at Scale

	Can We Simplify Access to Performance at Scale?
	ArmoniK: A User-Friendly Trade-Off
	Towards AI with ArmoniK and JAX
	The Right Tool for the Right Job

