
ArmoniK: Simplifying Ac-
cess to Performance at
Scale
DP2E-AI 2025

Aneo

JérômeGurhem

June 23, 2025



Outline

Can We Simplify Access to Performance at Scale?

ArmoniK: A User-Friendly Trade-Off

Towards AI with ArmoniK and JAX

The Right Tool for the Right Job

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 1



Section 1

CanWe Simplify Access to Performance at Scale?

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 2



HPC: At the Cutting Edge of Three Disciplines

Software Hardware

Scientific Problem to Solve

HPC

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 3



The Decline of the Scientific Polymath

I 17th–18th centuries: Scientists like Newton and Leibniz contributed across disciplines —
science was relatively unified.

I 19th century: Rapid growth of disciplines (e.g., chemistry, biology, physics); first signs of
specialization.

I 20th century: Explosion of subfields and technical complexity; solo mastery becomes impossible.
I Today: Even within a single field (e.g., AI, genetics), experts specialize narrowly — cross-field

comprehension is rare.

Result

I No one scientist can read or understand all scientific publications.
I Applicable to HPC : It is increasingly difficult to master all its fields.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 4



Building Interfaces Between Disciplines

Software Hardware

Scientific Problem to Solve

HPC

Compilers

Libraries ASIC, FPGA,
Tensor Cores

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 5



Current Interfaces

I Hardware/Software
I Programming Languages: C, C++, Python, Fortran, etc.
I Compilers: GCC, Intel, LLVM, etc.

I Software/Scientific Problem
I Libraries: BLAS, LAPACK, FFTW, TensorFlow, PyTorch, etc.
I Frameworks: MPI, OpenMP, CUDA, OpenCL, Kokkos, etc.

I Hardware/Scientific Problem
I AI: AWS Inferentia, Google TPU, Nvidia Tensor Cores, etc.
I Dedicated Accelerators: FPGAs, ASICs, etc.

Are they good enough?

I Yes ! For the trade-off they were designed for.
I Still, they need deep expertise to be used effectively.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 6



Current Interfaces

I Hardware/Software
I Programming Languages: C, C++, Python, Fortran, etc.
I Compilers: GCC, Intel, LLVM, etc.

I Software/Scientific Problem
I Libraries: BLAS, LAPACK, FFTW, TensorFlow, PyTorch, etc.
I Frameworks: MPI, OpenMP, CUDA, OpenCL, Kokkos, etc.

I Hardware/Scientific Problem
I AI: AWS Inferentia, Google TPU, Nvidia Tensor Cores, etc.
I Dedicated Accelerators: FPGAs, ASICs, etc.

Are they good enough?

I Yes ! For the trade-off they were designed for.
I Still, they need deep expertise to be used effectively.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 6



Why Look BeyondCurrent Interfaces?

I Complexity of heterogeneous systems is growing rapidly.
I Experts are required to bridge hardware/software/application gaps.
I Scientific applications need:

I Scalability without re-architecting code.
I Transparent access to diverse computing resources.
I Efficient resource utilization and orchestration.

I Current solutions lack:
I Flexibility across architectures.
I Seamless integration and automation.
I User-friendly interfaces for scientists and engineers.

The Question

Can we simplify access to performance at scale?

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 7



Why Look BeyondCurrent Interfaces?

I Complexity of heterogeneous systems is growing rapidly.
I Experts are required to bridge hardware/software/application gaps.
I Scientific applications need:

I Scalability without re-architecting code.
I Transparent access to diverse computing resources.
I Efficient resource utilization and orchestration.

I Current solutions lack:
I Flexibility across architectures.
I Seamless integration and automation.
I User-friendly interfaces for scientists and engineers.

The Question

Can we simplify access to performance at scale?

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 7



Section 2

ArmoniK: A User-Friendly Trade-Off

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 8



ArmoniK's Goals

I Simplify the development of distributed applications
I Provide a user-friendly interface for scientists and engineers
I Adress the challenges of HPC without requiring deep expertise in parallel programming
I Getting reasonable performances

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 9



ArmoniK: a Hybrid Framework

Computational kernels

Data management

Advanced features

Jobs management

Jobs\Resources mapping

Resources management

App App App

Batch scheduler

App

Runtime

App

Runtime

App

Runtime

Batch scheduler

App App App

ArmoniK

Resource manager

I Computational kernels: User computations
I Data management: Reads, Writes, Communications between processes
I Advanced features: Overlapping, load balancing
I Jobs management: Job queues, resource allocation, job lifecycle
I Jobs / Resources mapping: Determine job execution on which machines
I Resources management: Machine pool update, node addition or removal

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 10



Task-based Programming in ArmoniK

Definition

Paradigm focusing on the decomposition of complex operations into smaller tasks

I Expression of complex data-driven dependencies
I ArmoniK’s distributed scheduler responsible for:

I Task distribution and load balancing
I Dependency resolution
I Tasks execution
I Data management (overlapping, prefetching, and checkpointing)

from pymonik import Pymonik, Task

if __name__ == "__main__":
with Pymonik(endpoint="localhost:5001", partition="pymonik"):

my_task = Task(lambda a, b: a+b, func_name="add")
result = my_task.invoke(1, 2).wait().get()
print(f"Result of add task: {result}") # 3

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 11



ArmoniK ProgrammingModel

I Task Graph: Bipartite DAG whose node sets
are tasks and data

I Task node: Single-node computation
(possibly multi-threaded) taking one or several
data inputs and outputting one or several data

I Data node: Immutable piece of data
depending on only one task at most

I Dependencies: Dependencies between tasks
are expressed as data dependencies

I Dynamic: The graph may not be entirely
known in advance (tasks can append tasks
and replace edges with subgraphs)

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 12



Dynamic Graph

Definition

Dependency graph is not fully known when scheduling starts.

I Task dependencies not known before submission
I Submissions can happen anytime
I Tasks can submit new tasks
I Tasks can delegate the production of their output to their new tasks

from pymonik import Pymonik, task

@task
def add_one(a:int) -> int:

return a + 1

@task
def add(a: int, b: int) -> int:

if a <= 0:
return b

b_plus_one = add_one.invoke(b)
return add.invoke(a-1, b_plus_one, delegate=True)

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 13



Dynamic Graph Example

1

b c

3 4

a

b

c

d e f

1

Available data
Unavailable data
Ready task
Pending task
Completed task

(a) (b)

g h i

a Created by
task 1

5

2Delegated

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 14



Computations/CommOverlapping

DataManagement

Responsibility for data allocation, transfer, and storage between computational operations

I ArmoniK is responsible for tasks input and output data management
I Allows for automatic communication + scheduling/task execution overlapping
I Automatic Uncoordinated Checkpointing

Function as a Service Scheduling
function 1

User Function 1
Input 

download Computation Output upload
Scheduling
function 2

User Function 2
Input 

download Computation Output upload

Overlapped
Function as a Service

Scheduling
function 1

User Function 1
Input 

download Computation Output upload

Scheduling
function 2

User Function 2
Input 

download Computation Output upload

ArmoniK Scheduling
function 1

User Function 1Input 
download Computation Output upload

Scheduling
function 2

User Function 2Input 
download Computation Output upload

Scheduling
function 3

User Function 3

Computation Output uploadInput download

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 15



ArmoniK Built-in Features

I Open Source: https://github.com/aneoconsulting/ArmoniK
I Observability: Extensive GUIs, CLIs, monitoring APIs, metrics, logs, and traces
I Portability: Effort to transfer an application from one environment to another

I Officially supported languages: C#, C++, Python, Rust, Java, and JavaScript
I Tasks on different architectures (x86, ARM, GPU, Linux, Windows), applications, environments

I Malleability: Dynamic reconfiguration of the number of allocated resources during execution
without interruption

I Resource Sharing: Share resources between applications to maximize resource utilization
I Modularity: Modules can be swapped without modifying ArmoniK’s code to suit user needs and

constraints
I Production Ready: Designed to be used in production environments, with a focus on stability,

security, scalability, and maintainability
I Used by our clients in their critical systems
I Drives our needs for validation and guarantees, monitoring, stability

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 16

https://github.com/aneoconsulting/ArmoniK


Fault Tolerance

I Works without interruption even when one or more nodes fail
I Allow support for preemptible computing resources
I Automatic and efficient task retry on failure
I Each curve represents a percentage of preempted instances

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 17



Throughput Scalability

I Indep : independent tasks workload
I Graph : nested fork-join workload
I 1-second long tasks
I Empty input/output data

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 18



Low Round-trip Latency

I Cumulative distribution functions (CDFs) of round-trip latency
I Batched submissions of 1, 10, and 100 independent zero-work tasks

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 19



Section 3

Towards AI with ArmoniK and JAX

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 20



JAX: AModern Tool for Scientific Computing and AI

JAX is a Python library that enables high-performance scientific computing by combining:
I NumPy-Compatible API for familiar, concise numerical code
I Automatic differentiation for optimization and ML
I Just-In-Time (JIT) compilation for accelerating performance
I Seamless CPU, GPU, and TPU execution
I Composable Transformations Combine transformations easily: e.g., jit(grad(f)),

vmap(grad(f)).

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 21



XLA: The Compiler Behind the Speed

I XLA (Accelerated Linear Algebra) is a domain-specific compiler developed by Google.
I It transforms JAX Python functions into highly optimized machine code.
I Performs operation fusion, memory planning, and hardware-specific optimizations.
I Enables JAX to deliver hardware-level performance from high-level Python code.
I Produces efficient code for CPUs, GPUs, and TPUs.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 22



Impact for Scientists and Engineers

I Write portable, optimized code without low-level programming
I Accelerate AI models, PDE solvers, and simulation kernels
I Integrate HPC workflows with modern ML toolchains
I Reduces boilerplate in high-performance computing
I Enables reproducible, portable, and efficient scientific models

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 23



ArmoniK + JAX: A Powerful Combination

I ArmoniK provides a distributed task scheduler and data management layer.
I JAX offers high-performance numerical computing capabilities.
I Together, they enable:

I Scalable, fault-tolerant AI and scientific computing
I Automatic data management and task scheduling
I Efficient execution on heterogeneous hardware

I Ideal for large-scale AI training, scientific simulations, and data analysis.
I Supports dynamic task graphs and overlapping computations.
I Provides a user-friendly interface for scientists and engineers.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 24



What It Looks Like

I Ideal for large-scale AI training, scientific simulations, and data analysis.
from pymonik import Pymonik, task
from jax import numpy as jnp

@task
def cholesky(A):

return jnp.linalg.cholesky(A)

if __name__ == "__main__":
x = jnp.array([[2., 1.],[1., 2.]])
with Pymonik(endpoint="localhost:5001", partition="pymonik",

environment={"pip":["jax"]}):↪→

L = cholesky.invoke(x).wait().get()
print(jnp.allclose(x, L @ L.T))

I Use GPUs instead of CPUs, just swap dependencies and partition.
with Pymonik(endpoint="localhost:5001", partition="pymonik-gpu",

environment={"pip":["jax[gpu]"]}):↪→

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 25



Section 4

The Right Tool for the Right Job

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 26



The Right Tool for the Right Job

I No single scientist can master all fields in HPC.
I Interfaces between disciplines are crucial.
I And the trade-off between performance and usability is essential.
I However, the current trade-off is speed-oriented, requiring deep expertise.
I ArmoniK aims to shift this trade-off towards usability while maintaining reasonable performance.
I It allows scientists to focus on their research without needing deep expertise in parallel

programming.
I ArmoniK is not a replacement for existing HPC tools but a complementary framework that

simplifies the development of distributed applications.
I We are looking for more use cases: https://github.com/aneoconsulting/ArmoniK

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 27

https://github.com/aneoconsulting/ArmoniK


Questions and Discussions

I What missing interoperability layers (software, standard, or abstraction) would most accelerate
convergence between traditional HPC linear algebra workflows and today’s extreme-scale AI
workloads?
I There are tentatives between hardware and software (Kokkos, JAX, etc.), but what about

applications that does not fit in these frameworks?
I In companies, we see that over time, organizational interfaces tends to match the interfaces in the

IT systems.
I We still have a lot of work to build scientific and technology interfaces that allows users to

cooperate without a deep expertise in all HPC/AI-related fields.
I Looking ahead to 2030, do you expect the principal bottleneck for extreme-scale AI to be data,

algorithms, resilience or energy, and how does that prediction shape your research priorities
today?
I Energy: It will probably be an issue in Europe, probably less true elsewhere.
I It will be a trade-off between the three others.

I Given the different developments in architecture processors for AI and “computational science”,
do you think we’ll see a convergence or divergence of roadmaps?
I HPC will use whatever will be available on the market, as in the last 30 years.

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 28



Thank you for your attention!

Do you have any questions?

Jérôme Gurhem ArmoniK: Simplifying Access to Performance at Scale 29


	Can We Simplify Access to Performance at Scale?
	ArmoniK: A User-Friendly Trade-Off
	Towards AI with ArmoniK and JAX
	The Right Tool for the Right Job

