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DIMENSIONALITY REDUCTION IN Al

Reducing the cost of LLMs through dimensionality reduction techniques that
simplify data representation while retaining relevant information

Distilling big/complex/raw data to produce unified/focused/usable ones

on applications as clustering, data visualization, anomaly
detection, data compression, data preprocessing, ...

like Transformer by applying them to almost every layer

Processing reduced data provides accelerated & efficient LLMs

Challenges : Robust distributed dimensionality reduction
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DR FOR TRANSFORMER-BASED LILMS
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PROJECTION ON SMALLER OR LARGER SPACES

1. Projection on smaller subspace
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An Example application of PCA to a financial data set in WEKA, a Java data mining software
https://youtu.be/OdINM96sHi0?si=913004dZgRE8pMxJ

2. Projection on larger space



http://en.wikipedia.org/wiki/Weka_(machine_learning)
https://youtu.be/OdlNM96sHio?si=9I3OO4dZgRE8pMxJ

OUTLINE

A brief overview of DR techniques

Unite and Conquer methods in high-performance linear

algebra
Multiple implicit restarted Arnoldi method (MIRAMns)

Concluding remarks
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A BRIEF OVERVIEW OF DR TECHNIQUES

Curse of dimensionality ;:  Problems like i1ncrease of data size and

parameters, points too far apart making it difficult to estimate data

distributions, overfitting risk of the model, loss of the meaning of proximity
notions, ...

Major challenge : Learn from a simplified data representation of the original
dataset to gain more 1nsights from the original dataset.

Methodology : Apply DR techniques to map the raw information into a new
feature space where data analysis methods can be used.
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DIMENSIONALITY REUCTION

Reducing data by simplifying its representation while keeping relevant
information

components components components components components

dddu

preserved preserved preserved preserved preserved
variance : variance : variance : variance : variance :

Guillaume Saint-Cirgue : https://www.youtube.com/c/MachineLearnia
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DR TECHNIQUES BASED ON NON-LINEAR TRANSFORMATION

Autoencoder : Encoding (DR) + decoding for reconstructing data. J&
In case of linear activations or a single hidden layer of sigmoid,
the ideal solution for an autoencoder is heavily linked to PCA.

Pruning and quantization to compress models after training a
mobile application (integration in on-ship SRAM)

Locally Linear Embedding : Build a weight matrix representing the local reconstruction of

each data point from its nearest neighbors, then, computes the eigenvectors of the global
weight matrix (PCA)

t-distributed Stochastic Neighbor Embedding (PCA + t-SNE),

Kernel PCA: Transforms the dataset into a higher dimensional feature space + PCA

Some are to spectral calculation
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DR TECHNIQUES BASED ON LINEAR TRANSFORMATION

v Component Analysis (PCA, ICA),
v" Linear Discriminant Analysis (known #variables - classification),

v Low-Rank approximations : Singular Value and CUR Decompositions
(importance of dimensions)

v Random Projections (data.Random matrix),
v Partial Least Squares (PLYS),

v t-distributed Stochastic Neighbor Embedding (PCA + t-SNE),
vV
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SPECTRAL COMPUTATION WITH LARGE SPARSE MATRICES

For A € C™", compute a small number of (less)dominant eigenpairs P)
Ak — (Al' ...,}tk) (S (Ck and Uk - (ul, ...,uk): Aul — Alul fori € [1, k] &

This dilation ratio 1s called eigenvalue, the vectors to Wthh it applies are
called eigenvectors, united in an eigenspace.

The calculation of the eigenelements of the
matrices 1S commonly called,
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ITERATIVE PROJECTION METHODS LARGE SPARSE EIGENPROBLEM

Random choice of an initial subspace K,

Fori = 0,1, ... until convergence do:

1. Projection of the problem onto K;
2. Solve the projected problem in the subspace
3. Use 2 to compute approximated solutions in original space

4. Ifno convergence, with a better subspace go to 1

A very commonly used subspace 1s Krylov subspace :
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UNITE AND CONQUER METHODS IN HP LINEAR ALGEBRA

Suppose we have | iterative methods to solve the same given problem. The unite and
conquer approach consists of making collaborate these | methods to accelerate the
convergence of the whole system.

Bi-Lanczos Bi-Lanczos
ERAM ERAM
ERAM GMRES

Projection Convergence
method accelerator

Before with hybrid methods :

Y. Saad, Chebyshev acceleration techniques for solving nonsymmetric eigenvalue; 1984, C. Brezinski
Hybrid procedures for solving linear systems; 1994), Code coupling (in simulation), ...
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UNITE AND CONQUER METHODS IN HP LINEAR ALGEBRA

Characteristics of UC methods

Multi level parallelism (coarse grain and fine grain)
Overlapping of comp/comm (asyn comm)

Fault tolerance

Great potential to dynamic load balancing

Many parameters, many reuse software components

Need well suited «standard» programming tools

Well suited to high-scale computing systems

N. Emad, S. Petiton. Unite and Conquer Approach for High Scale Numerical Computing, Journal of Computational Science, ISSN-1877-7503, 2016
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A SPECIFIC CASE OF UC METHODS: MULTIPLE-METHODS

06/16/2025




HOW TO FURTHER IMPROVE SUBSPACE QUALITY ?

Improving K,,,(4, ) = span (,Av, ..., A™ 1) using both m and

K, (4, v;) = span (v;, Av, ..., AT ),

with m; # m; and v; # v; (for i,j € [1,...,€] and i # J)
(Mg < Mmy<... < Mmy)

Km(A; v) o
span (v, Av, ..., ATa 7y, ATy, . AT 1y, ., ATy,

with K, € K, C...C Ky,
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PERFORMANCE OF UNITE AND CONQUER METHODS

RoadNet-PA matrix, 8 subspaces

Impicitly Restarted Arnoldi Method - - T T T
MIRAMNs(4, 7, 10 13, 16, 20)

—— |RAM MAX
—+— MIRAMNS

even for difficult mput

the best subspace in which we search
for principal axes is not always the largest.

Seleded subspace

Track for researching the number of clusters in
unsupervised learning

Iterations/collaboration concept in Al algorithms like
EL or MixExpert

Autotuned IRAM and Evolution of m ¢ W1th1n ARPACK

Convergence of MIRAMns vs IRAM and Evolution of m,s: in MIRAMns along restart cycles
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APPLICATION OF DDR WITH MIRAMNS IN NN

Date Fruit Fetal Health Radar
I
No Emb.__ Emb.
Training Fxec. time (s) |
" Tvain sccuracy (%) |

Evaluation accuracy (%) | | 94.44 89.99 93.66 90.84 98.79 98.36

* A quarter reduction in network size (at least) while minimizing loss of precision.

* The performance improvement is an increasing function of the size of the mput
(implying reduction 1n large model training time).
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CLUSTERING AND ANOMALY DETECTION WITH UC METHODS

e . . 84% hit rate
PI‘OflllIlg: IllOdlllaI'lty Clusterlng Spectral Modularity maximization Ground truth

The eigensolver takes 90% of the time

NVIDIA (nvGraph library)
MIRAMns, MInzos ns

The sparse matrix vector multiplication
takes 90% of the time in the eigensolver

Robcov Behavior profiler

UCEL (ATOS)

UC2B Generalization of

UCEL(NUMERYX)

Z Zlanl (ANOTHER BRAIN) A Evolution of the AUC the < with anomaly tection co-methods UCEL (Bagging in Boosting)
. eft: MRobcov(10) vs individual boosted Robe ht: 4 different anomaly ction methods vs indivi osted co-methods _
A. Diop, et al. 4 Unite and Conquer Based Ensemble Learning Method for User Behavior Modeling, IEEE IPCCC, 2020
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CONCLUDING REMARKS

Nonlinear approaches often use linear approaches

Need to improve spectral computation techniques

The extensibility of the UC approach opens multiple avenues for new techniques

. properties even for difficult input

a key to choose the best search subspace to mine for dominant
eeigenespace

* This best subspace for searching principal axes is not always the largest.

Using the concept of iterations/collaboration in Al algorithms like EL or MoE
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CONCLUDING REMARKS

Trade-off between reducing costs and maintaining the quality of results

Two mmportant challenges in dimensionality reduction :

A. What 1s the to search ?
B. What is the for A ?
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