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An Accidental Benchmarker Appendix B of the Linpack Users’ Guide
Designed to help users estimate the  
run time for solving systems of equation 
using the Linpack software.

First benchmark report from 1977; 
Cray 1 to DEC PDP-10                                 

19791979

Top 23 List from 1977
Performance of solving Ax=b using LINPACK software

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD
We worked independently and came to Argonne in the 

summers



LINPACK Benchmark Top500
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Size

Ra
te

TPP performance

• Since 1978 I maintained a LINPACK 
Benchmark list.

• Hans Meuer and Erich Strohmaier had a list of
fastest computers ranked by peak performance.

• Since 1993 listing of the 500 most powerful 
computers using 64-bit floating point
arithmetic.

• Yardstick: Performance for
Ax=b, dense problem

Maintained and updated twice a year:
SC‘xy in the States in November
Meeting in Germany in June



• TOP500 list began in 1993
• 65 systems used Intel’s i860 architecture
• Remainder had specialized architectures, 

mainly vector based 

• Most recent TOP500 list 
• 78% of systems used Intel processors
• Another 19% used AMD processors 

• 97% of the systems use x86-64 
architecture 

• Many use GPU accelerators
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• TOP500 list began in 1993
• 65 systems used Intel’s i860 architecture
• Remainder had specialized architectures, 

mainly vector based 

• Today’s TOP500 list 
• 59% of systems used Intel processors
• Another 34% used AMD processors 

• 93% of the systems use x86-64 
architecture 

• Many use GPU accelerators
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Scientific High Performance Computing based on Commodity  
Processors Attach of the Killer Micros



• Alibaba
• CIPU, 128 core ARM based
• Alibaba’s Elastic Compute Service

• AWS Graviton4
• 96 ARM cores, 7 chiplet design
• ~100 billion transistors, DDR5 memory

• Google TPU7
• 2X TPU3 performance
• 4096 units per “pod”
• Reconfigurable optical 

interconnect

• Microsoft Azure
• Project Catapult/Brainwave FPGA accelerator
• Cobalt 100 (128 Neoverse N2 ARMv9 cores)
• Maia100 (Athena) AI accelerator

Cloud Vendors are Designing and Using Their Own Processors

Even car makers
• Tesla
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Our HPC Systems are Based on Commodity Parts

• Commodity Processors
§ 93% of the Top500 system use X86 (Intel & AMD) instruction set

• Commodity Accelerators
§ 86% of accelerated systems use NVIDIA

• Commodity Interconnect
§ 87% of the Top500 systems use Ethernet or Infinaband

• Commodity OS
§ 100% of the Top500 systems run on Linux

• Unlike the Hyperscalers
§ They are building their own processors, accelerators, and 

interconnects
10



June 2025: The TOP 10 Systems (54% of the Total Performance of Top500) 

Rank     Site Computer Country Cores Rmax
[Pflops]

% of 
Peak

Power
[MW]

GFlops/
Watt

1 DOE / NNSA
LLNL

El Capitan, HPE Cray EX255a, AMD 4th EPYC 24C, 1.8 
GHz, AMD Instinct MI300A, Slingshot 11 11,039,616 1,742 63 29.5 58.9

2 DOE / OS  
Oak Ridge Nat Lab

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C,          
2 GHz, AMD Instinct MI250X, Slingshot 11 USA 9,066,176 1,353 65 24.6 55.0

3 DOE / OS  
Argonne Nat Lab

Aurora, Intel, Xeon CPU Max Series 2.4 GHz,        
Intel Data Center GPU Max Series, Slingshot 11 9,264,128 1,012 51 38.7 26.1

4 EuroHPC/FZL JUPITER/Booster, EVIDEN BullSequana GH             
72 C, 3 GHz, NVIDIA H100, NVIDIA HDR 4,801,344 793. 85 13.1 60.5

5 Microsoft, Azure Cloud Eagle, Intel, Xeon 8490C, 2 GHz,                           
Nvidia H100, Infiniband 2,073,600 561. 66 -

6 Eni S.p.A. HPE Cray EX235a, AMD Optimized 3rd EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11 3,143,520 477. 78 8.46 56.5

7 RIKEN Center for 
Computational Science

Fugaku, ARM A64FX (48C, 2.2 GHz),                           
Tofu D Interconnect Japan 7,630,848 442. 82 29.9 14.8

8 Swiss National 
Supercomputing Center CSCS

Alps, HPE Cray EX254n, Nvidia Grace 72C 3.1 Nvidia 
GH200 Superchip, Slingshot 11 Swiss 2,121,600 434. 76 7.12 61.0

9 EuroHPC /CSC LUMI, HPE Cray EX235a, AMD 3rd EPYC 64C,             
2 GHz, AMD Instinct MI250X, Slingshot 11 Finland 2,752,704 380. 71 7.10 52.3

10 EuroHPC/CINECA
Leonardo, BullSequana XH2000, Xeon Platinum 8358 

32C, 2.6GHz,                                                       
NVIDIA A100 (108C), Quad-rail NVIDIA HDR100

Italy 1,824,768 241. 78 7.49 32.2

1,400,000.00

1,600,000.00

1,800,000.00

2,000,000.00
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Elon Musk's xAI Colossus System Used for Training Grok, 
Musk’s LLM for Their Chatbot for X/Twitter

• Built on Nvidia’s H100
• 67 Tflop/s each 64 bit fl pt

• 495 Tflop/s 32 bit fl pt
• 990 Tflop/s 16 bit fl pt
• 1980 Tflop/s 8 bit fl pt

• 64 GPUs + 16 CPUs / rack
• 2 CPUs for 8 GPUs

• 8 racks / group (512 GPUs)
• 1,500 racks in total
• Integrated by Supermicro

• Ethernet 400 Gb/s
• 200,000 H100’s

• 13.4 Eflop/s 64 bit fl pt
• 100 Eflop/s 32 bit fl pt
• 200 Eflop/s 16 bit fl pt
• .4 Zflop/s 8 bit fl pt

• $3-4B Cost
• 300 MW Power

1021 Ops/s 



Performance and Benchmarking Evaluation Tools

¨ Linpack Benchmark - Longstanding benchmark started in 1979
ØLots of positive features; easy to understand and run; shows trends

¨ However, much has changed since 1979
ØArithmetic was expensive then and today it is over-provisioned and 

inexpensive
¨ Linpack performance of computer systems is no longer 

strongly correlated to real application performance
ØLinpack benchmark based on dense matrix multiplication
ØNot “typical” of scientific HPC applications, distorts the field

¨ Designing a system for good Linpack performance can lead to 
design choices that are wrong for today’s applications



Today’s Top HPC Systems Used to do Simulations
• Climate
• Combustion
• Nuclear Reactors
• Catalysis
• Electric Grid
• Fusion
• Stockpile
• Supernovae
• Materials
• Digital Twins
• Accelerators
• …

• Usually 3-D PDE’s
• Sparse matrix computations, not dense 14



HPCG Results; The Other Benchmark
• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential 

computational and communication patterns that are prevalent in a 
variety of methods for discretization and numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collectives.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux



HPCG Top 10, June 2025
Rank Site Computer Cores

HPL 
Rmax

(Pflop/s)

TOP500 
Rank

HPCG 
(Pflop/s)

Fraction of 
Peak

1 DOE/SC/LLNL
USA

El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 24C 
1.8 GHz, AMD Instinct MI300A, Slingshot-11 11,039,616 1742 1 17.4 0.6%

2
RIKEN Center for 
Computational Science
Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu 7,630,848 442 7 16.0 3.0%

3 DOE/SC/ORNL
USA

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C, 2 GHz, 
AMD Instinct MI250X, Slingshot-11 9,066,176 1353 2 14.1 0.7%

4 DOE/SC/ANL
USA

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 GHz, 
Intel GPU MAX, Slingshot-11 9,264,128 1012 3 5.6 0.3%

5 EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, 
AMD MI250X, Slingshot-11 2,752,704 380 9 4.6 0.9%

6 CSCS
Switzerland

Alps, HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, 
NVIDIA GH200 Superchip, Slingshot-11 2,121,600 435 8 3.7 0.6%

7 EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 
NVIDIA HDR100 Infiniband

1,824,768 241 10 3.1 1.0%

8 AIST
Japan

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558 48C 
2.1GHz, NVIDIA H200 SXM5 141 GB, Infiniband
NDR200, HPE

479,232 145 15 2.4 1.3%

9 DOE/SC/LBNL
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 888,832 79 25 1.9 1.7%

10 DOE/NNSA/LLNL
USA

Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox 
EDR, NVIDIA Volta V100, IBM 1,572,480 95 20 1.8 1.4%

Think of a race car that has the potential of 200 MPH but only goes 2 MPH!

Think of a race car that has the potential of 200 KPH but only goes 2 KPH!



“Responsibly Reckless” Algorithms

▪ Try a fast algorithm (that may be unstable) and 
might fail (but rarely)
• Avoiding Data Movement
• Avoiding Synchronization
• Use Mixed Precision
▪ Check for instability
▪ If needed, recompute with a stable algorithm
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52IEEE FP64

IEEE FP32
Traditional HPC
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15 112IEEE FP128

Sign bit Fractio bitsExponent bit Fraction bit

Floating Point Representation
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52IEEE FP64

IEEE FP32

IEEE FP16

Google BF16
ML, Neural Networks

Traditional HPC
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Can we leverage the short precision in our 
“traditional” numerical computations?

15 112IEEE FP128

Sign bit Fractio bitsExponent bit Fraction bit

Floating Point Representation



23

52IEEE FP64

IEEE FP32

IEEE FP16

Google BF16

NVIDIA FP8

NVIDIA FP8
Transformers

ML, Neural Networks

Traditional HPC

8

11

5

5
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Can we leverage the short precision in our 
“traditional” numerical computations?

15 112IEEE FP128

Sign bit Fractio bitsExponent bit Fraction bit

Floating Point Representation

Forward propagation through a neural network requires 
higher precision for weights and activations.
In contrast, gradients in the backward propagation 
(used for updating weights) require a higher dynamic range. 



WHY MIXED PRECISION? (Less is Faster)
• There are many reasons to consider using mixing 

precisions within an application:
§ Less Communication

• Reduce memory traffic (from memory to processor)
• Reduce network traffic (from node to node)

§ Reduce memory footprint (less data to store*)
§ Arithmetic faster (usually factor of 2 or more)

• Lower precision is usually faster than 
high precision operations

• Architecture may have an accelerator
• Integers to emulate floating point

§ Suitable numerical properties for the algorithm & problems.
The hope is to improve the algorithm performance without 
compromising the quality of science



Can We Take Advantage of the Hardware?
Basically, There are Three Approaches with Mixed Precision

1. Use a mathematical technique
§ Get an approximation in lower precision then use 

something like Newton’s method to enhance accuracy.
§ Emulate floating point in integer arithmetic. 

2. Transfer less bytes, data transfer is expensive
§ Store data in primary storage in full precision.
§ Transfer the data in short precision.

• Could also use data compression techniques
§ Compute using full precision.

3. Use a combination of 1. & 2.



One Idea for Using Mixed Precision Goes Something 
Like This…

• Exploit lower arithmetic as much as possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective use of 
higher floating point arithmetic to provide a “refined 
results” (more accurate).

• Intuitively: 
§ Compute a 32 bit result, 
§ Calculate a correction to 32 bit result using selected higher 

precision (64 bit) and,
§ Perform the update of the 32 bit results with the correction 

using high precision (64 bit). 



Intriguing Potential
• Exploit lower precision as much as possible

§ Payoff in performance
• Faster floating point 
• Less data to move

§ Use integer arithmetic to emulate floating point
• Automatically switch between SP and DP to match the desired accuracy

§ Compute solution in SP and then a correction to the solution in DP
• Potential for GPU, FPGA, special purpose processors

§ Use as little precision as you can get away with and improve the accuracy
• Linear systems and Eigenvalue, optimization problems, where Newton’s 

method is used.
xi

z (correction, xi+1 – xi )

xi+1

C.T. Kelley, “Newton’s Method in Mixed Precision,”
SIAM Review, Vol 64, No. 1, pp 191-211, 2022



Mixed Precision

Use a mathematical technique
§ Get an approximation in lower precision (fast) then use 

something like Newton’s method to enhance accuracy.
§ Newton’s Method

•x+ = x – f(x)/f’(x)

•For Ax = b;     f(x) = b - Ax     and     f’(x) = -A
•x+ = x + A \ ( b – Ax );       r = b – Ax 
• (x+ - x) = A-1 * r
• ∆ = (L*U)-1  * r 25



IBM’s Cell Processor - 2004 

$600

The Cell Processors were fully IEEE-754 compliant in double precision. 
In single precision, they only implement round-towards-zero, denormalized
numbers are flushed to zero and NaNs are treated like normal numbers.

• 9 Cores
• Power PC at 3.2 GHz
• 8 SPEs

• 32 bit fl pt peak at 204.8 Gflop/s peak!
• 64 bit fl pt peak at   14.6 Gflop/s

• 14 times slower that SP; 
• Factor of 2 from ratio SP:DP and factor of 7 because of latency issues

• Cell Processor was used in the LANL Roadrunner 
Supercomputer which was #1 in 2008 and the Sony 
Playstation 3



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) FP32 precision O(n3)
x = U\(L\b) FP32 precision O(n2)
r = b – Ax (with original A) FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r FP32 precision O(n2)
2. x = x + z FP64 precision O(n1)
3. r = b – Ax (with original A) FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively refine 
(O(n2)) the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
Ø Need a copy of the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging	Mixed	Precision	on	Cell	Processor

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Problems if the matrix is ill-conditioned



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax (with original A) FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax (with original A) FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively refine 
(O(n2)) the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
Ø Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging	Mixed	Precision	for	Linear	Algebra

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Problems if the matrix is ill-conditioned

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution with the conditioning of the original matrix.

E. Carson & N. Higham, “Accelerating the Solution of Linear 
Systems by Iterative Refinement in Three Precisions SIAM J. 
Sci. Comput., 40(2), A817–A847.

J. Langou, et al., Exploiting the Performance of 32 bit fl-pt
Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SC06

Originally motivated by the Sony PlayStation
SP peak 205 Gflop/s, DP peak 15 Gflop/s



Mixed-Precision Iterative Refinement Solver

Performance and Efficiency Improvements Across Three Generations

32k matrix size solution

6.6
16.8

42.6
34.6

75.7

157

0

20

40

60

80

100

120

140

160

180

Volta (V100) Ampere (A100) Hopper (H200)

Pe
rfo

rm
an

ce
 (T

FL
O

P/
s)

Mixed-Precision Iterative Refinement Solver

FP64 (Native) FP16+FP64 (MxP) 3.6X

28
43

64

173

236

359

0

50

100

150

200

250

300

350

400

Volta (V100) Ampere (A100) Hopper (H200)

Ef
fic

ie
nc

y 
(G

FL
O

P/
s/

W
at

t)

Mixed-Precision Iterative Refinement Solver

FP64 (Native) FP16+FP64 (MxP) 5.4X



NVIDIA Blackwell B200 GPU

8+ X





112X



Opportunity Breeds Innovation, Ozaki Scheme

Divide the numbers into “slices” of 2-8

Use Int8 Tensor Cores for each matrix multiplication
Int8-input Int32-accumulation

http://arxiv.org/abs/2506.11277

http://arxiv.org/abs/2506.11277


The Take Away

• HPC Hardware is Constantly Changing
• Scalar
• Vector
• Distributed
• Accelerated
• Mixed precision

• Algorithm / Software advances follows 
hardware.
• And there is “plenty of room at the top”

!"#$%$&'()*$+,-(./(%..0(1,(,#$(".)2(3#1,(45**(6%57$(8.0)9,$%(
)$%/.%01+8$(1/,$%(:..%$&'(*14;<

Feynman’s 1959 
Lecture @ CalTech
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