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An ACCIdentaI BenChmarker Appendix B of the Linpack Users’ Guide

LINPACK was an NSF Project w/ ANL, UNM, UM, & UCSD Designed to he|p users estimate the
We worked independently and came to Argonne in the
summers

Top 23 List from 1977
Performance of solving Ax=b using LINPACK software

run time for solving systems of equation
using the Linpack software.

First benchmark report from 1977;
Cray 1 to DEC PDP-10
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<« LINPACK Benchmark — Top500

* Since 1978 I maintained a LINPACK
Benchmark list.

* Hans Meuer and Erich Strohmaier had a list of
fastest computers ranked by peak performance.

* Since 1993 listing of the 500 most powerful
computers using 64-bit floating point
arithmetic.

* Yardstick: Performance for

Ax=b, dense problem
Maintained and updated twice a year:

SC‘xy in the States in November 500
Meeting in Germany in June The List.

TPP performance

Rate

Size




e TOP500 list began in 1993

* 65 systems used Intel’s i860 architecture
* Remainder had specialized architectures,

mainly vector based
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Scientific High Performance Computing based on Commodity
Processors Attach of the Killer Micros

e TOP500 list began in 1993

* 65 systems used Intel’s i860 architecture
* Remainder had specialized architectures,

mainly vector based

* Today’s TOP500 list

* 59% of systems used Intel processors
* Another 34% used AMD processors

* 93% of the systems use x86-64
architecture
* Many use GPU accelerators
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Cloud Vendors are Designing and Using Their Own Processors

FES

Alibaba

* CIPU, 128 core ARM based
* Alibaba’s Elastic Compute Service

Even car makers
* Tesla

Dojo D1 Chip

AWS Graviton4
* 96 ARM cores, 7 chiplet design
e ~100 billion transistors, DDR5 memory

* Google TPU7
e 2X TPU3 performance

Ironwood
* 4096 units per “pod” — o
* Reconfigurable optical s 2056 4960 o

interconnect o

Bandwidth/ 32GB 95GB 192 GB
By oS e efite §)|SambaNovar
;é?'” S YSTEMS

- (@erebras |

per chip 275 TFLOPS 459 TFLOPS 4614 TFLOPS
|
|
!
| 9 r O ™
.| I

* Microsoft Azure
* Project Catapult/Brainwave FPGA accelerator
* Cobalt 100 (128 Neoverse N2 ARMV9 cores)
* Maial00 (Athena) Al accelerator
* S$10B+ OpenAl investment/S80B in data centers
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ICL :

Our HPC Systems are Based on Commodity Parts

« Commodity Processors
= 93% of the Top500 system use X86 (Intel & AMD) instruction set

Commodity Accelerators
= 86% of accelerated systems use NVIDIA

Commodity Interconnect
= 87% of the Top500 systems use Ethernet or Infinaband

Commodity OS
= 100% of the Top500 systems run on Linux

Unlike the Hyperscalers

= They are building their own processors, accelerators, and
interconnects

10
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|(§ _ June 2025: The TOP 10 Systems (54% of the Total Performance of Top500)

. - - - % of | Power | GFlops/
Rank Site
oo/ Top500 »s] | Peak | IMW] | Watt
7 DOEL-ZAAILNSA 1800000 e ElCapitan 2 63 295 58.9
o 1600000
S |
2 ; 3 65 24.6 55.0
Oak Ridge Nat Lab 1400000
DOE/ 05 ® Frontier
4 EuroHPC/FZL 1000000 # Aurora ] 85 | 131 | 605
800000
5 Microsoft Azure Cloud g 66 -
600000 | Jupiter
° Eagle
6 [ Sp.A. . i 78 | 846 | 565
Eni Sp. 400000 ’.
RIKEN Center for 200000 i
7 Computational Science ‘ Rank i e | R
. : 0
8 Supercxﬁiﬁ\; Z'eann:ér Scs 0 50 100 150 200 250 300 350 400 450 500 76 7.12 610
LUML, HPE Cray EX235a, AMD 37 EPYC 64cC,
2 AR 2 6Hz, AMD Instinct MIZ50X, Slingshot 11 SRS SR N Gl
Leonardo, BullSequana XH2000, Xeon Platinum 8358 -
10 EuroHPC/CINECA 32¢C 2.66Hz, Tta 1824768 241, 78 7.49 322

NVIDIA A100 (108¢), Quad-rail NVIDIA HDR10O

| Rmax




Elon Musk's xAl Colossus System Used for Training Grok,
Musk’s LLM for Their Chatbot for X/Twitter

 Built on Nvidia’s H100
» 67 Tflop/s each 64 bit fl pt
* 495 Tflop/s 32 bit fl pt
* 990 Tflop/s 16 bit fl pt
» 1980 Tflop/s 8 bit fl pt
64 GPUs + 16 CPUs / rack
* 2 CPUs for 8 GPUs
* 8racks/ group (512 GPUs)
* 1,500 racks in total
* Integrated by Supermicro
* Ethernet 400 Gb/s

e 200,000 H100's
* 13.4 Eflop/s 64 bit fl pt
* 100 Eflop/s 32 bit fl pt |
* 200 Eflog 6 hi N :
e S$3-4B Cost
* 300 MW Power




Performance and Benchmarking Evaluation Tools

¢ Linpack Benchmark - Longstanding benchmark started in 1979
> Lots of positive features; easy to understand and run; shows trends

¢+ However, much has changed since 1979
» Arithmetic was expensive then and today it is over-provisioned and
inexpensive
¢ Linpack performance of computer systems is no longer
strongly correlated to real application performance
» Linpack benchmark based on dense matrix multiplication
> Not “typical” of scientific HPC applications, distorts the field

¢ Designing a system for good Linpack performance can lead to
design choices that are wrong for today’s applications



Today’s Top HPC
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Climate
Combustion
Nuclear Reactors
Catalysis
Electric Grid
Fusion
Stockpile
Supernovae
Materials
Digital Twins
Accelerators

Models in
Catalysis

Usually 3-D PDE’s

* Sparse matrix computations, not dense



hpcg-benchmark.org With Piotr Luszczek and Mike Heroux

HPCG Results; The Other Benchmark

* High Performance Conjugate Gradients (HPCG). \

» Solves Ax=b, A large, sparse, b known, x computed. | ﬁf;\‘

* An optimized implementation of PCG contains essential - .
computational and communication patterns that are prevalent in a N

variety of methods for discretization and numerical solution of PDEs

* Patterns:
* Dense and sparse computations.
* Dense and sparse collectives.
* Multi-scale execution of kernels via MG (truncated) V cycle.
* Data-driven parallelism (unstructured sparse triangular solves).

 Strong verification (via spectral properties of PCG). 27-point stencil operator




HPCG Top 10, June 2025

HPL

Computer Cores Rmax TOP500 HPCG Fraction of
(Pflob/s) Rank (Pflop/s) Peak
DOE/SC/LLNL El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 24C o
1 USA 1.8 GHz, AMD Instinct MI300A, Slingshot-11 11,039,614 1742 1 17.4 0.6%
] | I-UI
2 Computational Science  Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fuijitsu 7,630,848 442 7 16.0 3.0%
/ DOE/SC/ORNL Frontier, HPE Cray Ex235a, AMD 3 EPYC 64C, 2 GHz, (<) \
3 usa AMD Instinct MI250X, Slingshot-11 9,066,171 1353 2 14.1 0.7%
DOE/SC/ANL Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 GHz, o
S Intel GPU MAX. Slingshot-11 9,264,124 1012 3 5.6 0.3%
EuroHPC/CSC LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, o
Finland AMD MI250X, Slingshot-11 2,752,704 380 9 4.6 0.9%
CSCS Alps, HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, o
Switzerland NVIDIA GH200 Superchip, Slingshot-11 2,121,600 435 8 3 vy 06 /°
Leonardo, BullSequana XH2000, Xeon Platinum 8358
7 [UrEF ORI 32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 1,824,768 241 10 3.1 1.0%
\ Italy NVIDIA HDR100 Infiniband /
ABCL3.0,HRE Cray-XD6Z0,Xa0n-Rlalinum-2558-48C
n - P e A=A A 4 A d = .3°/°
Th|nk of a race car that has the potential of 200 KPH but only goes 2 KPH |
® usa 2 a5, NVIDIARTG0 §X04 40 G5, Singehorio 888833 /9 | 25 19 o
DOE/NNSA/LLNL Sierra, S922L.C, IBM POWER9 20C 3.1 GHz, Mellanox o
18 EDR, NVIDIA Volta V100, IBM 1,572,480 95 20 L 1.8 . 1.4% y




“Responsibly Reckless” Algorithms

= Try a fast algorithm (that may be unstable) and
might fail (but rarely)

 Avoiding Data Movement
 Avoiding Synchronization
» Use Mixed Precision
= Check for instability
 If needed, recompute with a stable algorithm



Floating Point Representation
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IEEE FP32 In Traditional HPC



Floating Point Representation

Sign bit

IEEE FP32 In Traditional HPC
[134 53l 5| 10
Google BF16 In ML, Neural Networks

Can we leverage the short precision in our
“traditional” numerical computations?



Floating Point Representation

e Fr123 [|[ECIN R T
e Fros || IEEN I

IEEE FP32 In Traditional HPC

[134 53l 5| 10

ML, Neural Networks
Google BF16 In cural Tetwo
Forward propagation through a neural network requires
NVIDIA FP8 I higher precision for weights and activations.
NVIDIA FPS I Transformers In contrast, gradients in the backward propagation '
(used for updating weights) require a higher dynamic range.

Can we leverage the short precision in our
“traditional” numerical computations?
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< WHY MIXED PRECISION? (Less is Faster)

 There are many reasons to consider using mixing
precisions within an application:

» Less Communication
« Reduce memory traffic (from memory to processor)
» Reduce network traffic (from node to node)

= Reduce memory footprint (less data to store®)

= Arithmetic faster (usually factor of 2 or more)
* Lower precision is usually faster than
high precision operations
« Architecture may have an accelerator
* Integers to emulate floating point
= Suitable numerical properties for the algorithm & problems.

The hope is to improve the algorithm performance without
compromising the quality of science



. Can We Take Advantage of the Hardware?
~ Basically, There are Three Approaches with Mixed Precision

1. Use a mathematical technique

= Get an approximation in lower precision then use
something like Newton's method to enhance accuracy.

= Emulate floating point in integer arithmetic.

2. Transfer less bytes, data transfer is expensive
= Store data in primary storage in full precision.

= Transfer the data in short precision.
Could also use data compression techniques

= Compute using full precision.
3. Use a combination of 1. & 2.



. One Idea for Using Mixed Precision Goes Something
~ Like This...

- Exploit lower arithmetic as much as possible.
= Especially for the bulk of the computation

* Correct or update the solution with selective use of
higher floating point arithmetic to provide a “refined
results” (more accurate).

* Intuitively:
= Compute a 32 bit result,

= Calculate a correction to 32 bit result using selected higher
precision (64 bit) and,

= Perform the update of the 32 bit results with the correction
using high precision (64 bit).



n
< Intriguing Potential

Exploit lower precision as much as possible
= Payoff in performance

» Faster floating point
e Less data to move

= Use integer arithmetic to emulate floating point

« Automatically switch between SP and DP to match the desired accuracy
= Compute solution in SP and then a correction to the solution in DP

* Potential for GPU, FPGA, special purpose processors
= Use as little precision as you can get away with and improve the accuracy

« Linear systems and Eigenvalue, optimization problems, where Newton’s
method is used.

)
S (xi)

f(xl) Xi+1
- f/ (x ) C.T. Kelley, “Newton’s Method in Mixed Precision,”
l

SIAM Review, Vol 64, No. 1, pp 191-211, 2022

Xjit] = X Z (correction, Xj.1 — X;)
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“Mixed Precision

Use a mathematical technique

» Get an approximation in lower precision (fast) then use
something like Newton’s method to enhance accuracy.

= Newton’s Method

*X.=X-f(x)/f(x)

eForAx=b; f(x)=b-Ax and f(x)=-A
eX,=X+A\(b-Ax); r=>b- Ax

o (X,-X)=AT*r

A = (LU)T *r

25



SPE SPE SPE SPE
SPU SPU SPU SPU | 25.6 GFlops SP

IBM'’s Cell Processor - 2004 e

PPE q = : )
* 9 Cores PPU [ 204.8 GB/s I
* Power PCat 3.2 GHz
* 8 SPEs ! /\
[ [ [ 256685
* 32 bit fl pt peak at 204.8 Gflop/s peak! e e

« 64 bit fl pt peak at 14.6 Gflop/s S S600

* 14 times slower that SP;
» Factor of 2 from ratio SP:DP and factor of 7 because of latency issues

* Cell Processor was used in the LANL Roadrunner
Supercomputer which was #1 in 2008 and the Sony

Playstation 3

The Cell Processors were fully IEEE-754 compliant in double precision.
In single precision, they only implement round-towards-zero, denormalized

numbers are flushed to zero and NaNs are treated like normal numbers.



Leveraging Mixed Precision on Cell Processor

250

Idea: use low precision to cc
(O(n?)) the solution in order  ,, | —t—t—t—t—o—o—o—t————————s

8 SGEMM (Embarrassingly Parallel) .

—+=SP Peak (204 Gflop/s)

Iterative refinement for dense «8=SP Ax=b IBM

LU= IU(A) 150 +—— . —DSGESV .30 secs
X = I:l)J\(k\b) S 2 DP Peak (15 Gflop/s) Mixed Precision
#8192 (ES (L0 GHETR &) i ~#=DP Ax=b IBM Performance
L]
A7 secs

WHILE || r || not small enough 100 x

1. find a correction “z" 1

2. X=X+1z
3. r=b- Ax (with origin 50 8.3X Speedup

END
v 3.9 secs

- : 0 ; . ; - ' ' ; '
> Wilkinson, Moler, Stewart, & Higham pr 0 500 1000 1500 2000 2500 3000 3500 4000 4500
> It can be shown that using this approacl Matrix Size
>  Need a copy of the original matrix to compute residual (r) and matrix cannot be too badly conditioned

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. J. Dongarra. Exploiting the performance
of 32 bit floating point arithmetic in obtaining 64 bit accuracy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.




Leveraging Mixed Precision for Linear Algebra

Tdea: use low precision to compute the expensive flops (LU O(n®)) and then iteratively refine
(O(n?)) the solution in order to achieve the FP64 arithmetic

Iterative refinement for dense systems, Ax = b, can work this way.

L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision o(n?)
r =b - Ax (with original A) FP64 precision o(n2)

WHILE || r || not small enough
1. find a correction "z" to adjust x that satisfy Az=r
solving Az=r could be done by either:

» GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision O(n?)
2. X=X+2 FP64 precision O(n?)
3. r=b - Ax (with original A) FP64 precision o(n2)

END

J. Langou, et al., Exploiting the Performance of 32 bit fl-pt
Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SCO6
Originally motivated by the Sony PlayStation E. Carson & N. Higham, “Accelerating the Solution of Linear

SP peak 205 Gf[op /s. DP peak 15 Gf[op /s Systems by lterative Refinement in Three Precisions SIAM J.
’ Sci. Comput., 40(2), A817-ABAT.

~ A Y A N | e N O N [ N - S | S | B = =~ W = | Yy SO | £+ SO | N NS N N = PN N



Mixed-Precision Iterative Refinement Solver

Performance and Efficiency Improvements Across Three Generations

Mixed-Precision Iterative Refinement Solver

180

160 157
g 140
S 120
=
~— 100
IS
é 80 75.7
s 60
g 42.6

16.8
20 6.6
o — ]
Volta (V100) Ampere (A100) Hopper (H200)
W FP64 (Native) W FP16+FP64 (MxP) 3.6X

M FP64 (Native) W FP16 & FP32 & FP64 (MxP)

32k matrix size solution



NVIDIA Blackwell B200 GPU

T

800 - T I 1
— FP64
——FP16->64

700

(2]
o
o

31
o
o

(9]
o
o

Average Power (Watts)
H
o
o

N
o
o

280.0 33.8 TFLOP/s
100 8+ X
448 53  GFLOP/s/Watt

1 | 1 | |

0 4 8 12 16 20 24 28 32 36
Time (sec)




Figure of Merit Volta | Ampere | Hopper
2017 2020 2022
(V100) | (A100) | (H200)
FP64 FMA (TFLOP/s) 7.8 9.75 33.5
FP64 Tensor (TFLOP/s) N/A 19.5 67
FP32 FMA (TFLOP/s) 15.7 19.5 67
FP16 Tensor (TFLOP/s) 125 312 989
BF16 Tensor (TFLOP/s) 125 312 989
INTS8 Tensor (TOP/s) N/A 624 1979
Memory BW (TB/s) 0.9 2.0 4.8




Figure of Merit Volta | Ampere | Hopper | Blackwell
2017 2020 2022 2024
(V100) | (A100) | (H200) | (B200)
FP64 FMA (TFLOP/s) 7.8 9.75 335 40
FP64 Tensor (TFLOP/s) N/A 19.5 67 40
FP32 FMA (TFLOP/s) 15.7 19.5 67 80
FP16 Tensor (TFLOP/s) 125 312 989 2250
BF16 Tensor (TFLOP/s) 125 312 989 2250
INT8 Tensor (TOP/s) N/A 624 1979 4500
Memory BW (TB/s) 0.9 2.0 4.8 8.0

112X



Opportunity Breeds Innovation, Ozaki Scheme

d=a-b+c
= (a0 +2 %a1 + 27 %) - (bo +27°b1 +271%b3) + ¢

—8 ~16
= aobo +2 "apb1  +27 Capb; Divide the numbers into “slices” of 28

2_8a1b0 + 2_16a1b1

—16 —24 -32_ 1 ., .~ \ [T v_Spit
27 Pagbyd 27 “%azby  +277%azxby + ¢ =050 ——
2 2Y1 2V2 ‘ ,,,,,,,,,,,,,,,,,,,, , -
JDI [ ]
= E00 O — %
. T . Solit : ‘e ’7’/;;)&//‘;/; C
Use Int8 Tensor Cores for each matrix multiplication dix anle s
Int8-input Int32-accumulation e %,

Analysis of Floating-Point Matrix Multiplication Computed via Integer Arithmetic

Ahmad Abdelfattah, Jack Dongarra, Massimiliano Fasi, Mantas Mikaitis, Francoise Tisseur

http://arxiv.org/abs/2506.11277



http://arxiv.org/abs/2506.11277

“There’s plenty of room at the Top: What will drive computer
-I- h -|— k A performance after Moore’s law?”
e a e W a y Leiserson et al., Science 368, 1079 (2020) 5 June 2020
The Top

Technology 01010011 01100011
01101001 01100101 @

01101110 01100011

* HPC Hardware is Constantly Changing 01100101 00000000

Software Algorithms Hardware architecture
* Scalar
Opportunity Software performance New algorithms Hardware streamlining
d Ve CtO r engineering
. . Examples Removing software bloat New problem domains Processor simplification
d D | St rl b u te d Tailoring software to New machine models Domain specialization
hardware features
* Accelerated

* Mixed precision 4
 Algorithm / Software advances follows o MO SOROM= ="
hardware. PR

* And there is “plenty of room at the top”

- Feynman’si@SQ
‘. ’_J Lecture @ CalTech




