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Model Compression in Pretraining

« SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of
LLMs Lazy Low-rank Adapters [ICLR'25]

Model Compression at Inference

« SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for
LLM Weight Compression [ICML’25]

Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

« STOICC: A Compiler for Tile-based Sparsity
STOICC



https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html
https://paramathic.github.io/stoicc-docs/

LLM Compute Graph | Weight Sparsity
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LLM Compute Graph | Time Breakdown
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Linear Layers are the bottleneck in both training and inference.
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« SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of
LLMs Lazy Low-rank Adapters [ICLR'25]



Weight Sparsity | Sparse Tensor Cores

We focus on 2:4 sparsity because NVIDIA sparse tensor cores!
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Dense Matrix Sparse Matrix Sparse Tensor Cores

}
2:4 Sparsity — 2 out of 4 consecutive elements are zero



Static vs. Dynamic Sparsity in Pretraining

Static Sparsity’ Dynamic Sparsity?

v| Memory Reduction X] Requires storing dense weights,
gradients, and optimizer states

v| No compute overhead

X| Mask search and update overhead

Update
Weights

Search
for Mask

[1] Thangasara et al., SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models (UAI23)
[2] Hu et al., Accelerating Transformer Pre-training with 2:4 Sparsity (ICML24)
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Sparse Training | Forward Pass

Sparse Tensor Cores

wT.

[_Forward Pass:Y = XWT"]




Sparse Training | Backward Pass

Sparse Tensor Cores

[_Forward Pass: Y =X WT"] GBackward Pass: VyL = V, LW /}
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Sparse Training | Backward Pass | Challenges

Sparse Tensor Cores Sparse Tensor Cores

[_Forward Pass: Y =X WT"] GBackward Pass: VyL = V, LW /}
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Sparse Training | Backward Pass | Prior Solutions

Prior work'2 uses transposable masks — Both W and W' are 2:4 sparse
« Challenge: The sparsity is limited to very few 2:4 patterns — Accuracy Loss

In SLoPe we allow the forward pass to have an arbitrary 2:4 pattern
» Double Pruned Backward Pass will solve the issue (‘_C QQ]

@) I @)
Oeeo
@OO®
Both rows and columns have 2:4 sparsity

[1] Hubara et al., Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks (NeurlPS21) 12
[2] Zhang et al., Bi-directional Masks for Efficient N:M Sparse Training(ICML23)
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Sparse Training | Double Pruned Backward Pass

Prune the transposed weight again in the backward pass

Sparse Tensor Cores Sparse Tensor Cores %

Magnitude
ﬁWZ

Pruning

&orward Pass:Y =X WTT @ackward Pass: VyL = Vy, LW 1)
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SLoPe | SpMM Setup Overhead

Pruning and preparing the weights in every
iteration is expensive!
 SLoPe prunes and prepares W in the
backward pass every 100 iterations " e rime

cuSPARSELt SpMM Time Breakdown

Time (ms)

768 1024 2048 2560 4096 5120 7168 9216

Matrix Dimension
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SLoPe | Lazy Low-rank Adapters (LoRA)

W = M[sparse + LR

15



d: Hidden Dimension

SLoPe | Lazy Low-rank Adapters (LoRA) B 3

L
W = Wsparse + LR
Complexity Sparse + Low-rank Dense
d?.
Memory > + 2rd d?
Compute '*’T“z + 2brd bd?
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SLoPe | Lazy Low-rank Adapters (LoRA)

d: Hidden Dimension
r: Adapter Rank
b: Batch Size

]

O
® R
t o
@
L
W = M[sparse + LR
Complexity Sparse + Low-rank Dense
dz
Memory — d2
Compute %'EZ_M \ bd?

Sincer < d, the memory and compute overhead is negligible.

./
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SLoPe | Lazy Low-rank Adapters | Convergence Rate

BERT-Large-Uncased
Low-rank Adapter Similarity with Final Adapters
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SLoPe adds LoRA in the last 1% training iterations!
(Lazy Low-rank Adapters Cn )
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SLoPe | Combined SpMM and Low-rank Adapters

* Low arithmetic intensity in low-rank adapters
- Solution: Combines SpMM and Low-rank adapters

4 ; N

X W L] =] xw, Y _ | xw, + XLR

+

\ Fused Multiplication and Add /
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SLoPe | Results | GPT2 Zero-shot Accuracy

GPT2 Small
T
Comparison: We compare SLoPe against state of MMLU
the art 2:4 sparse pretraining work (Ext. SR-STE'?)
Arc Challenge 20.7 18.4 194
OpenBookQA 16.2 14.2 16.4
SLoPe outperforms prior work in 6 out of 8 tasks! WinoGrande 50.6 47.5 50.8
HellaSwag 28.5 26.9 27.5
MathQA 21.8 21.4 20.8
PIQA 59.8 55.2 57.6
RACE 28.4 24.2 27.2
[1]1 Zhou et al., L earning N:M Fine-grained Structured Sparse Neural Networks From Scratch (ICLR21) 20

[2] Hu et al., Accelerating Transformer Pre-training with 2:4 Sparsity (ICML24)
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SLoPe | Results | Speedup and Memory Reduction

@ Speedup (vs. Dense)

N
Memory Reduction (vs. Dense)

Training: 1.25X
Inference: 1.54X

Training: 0.63X
Inference: 0.51X

21



Outline

Model Compression in Pretraining

« SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of
LLMs Lazy Low-rank Adapters [ICLR'25]

Model Compression at Inference

« SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for
LLM Weight Compression [ICML’25]

Compression Trinity Webpage
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https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html

LLM Compute Graph | Sparse Inference

Linear
/ Linear

Linear Linear —1  Linear
\ Linear

Linear

For large models, it might not be feasible to train models for sparsity, SLiM focuses on introducing
sparsity at post training!

24



Post-training Compression Methods

Sparsity
Pruning
Set non-important weights to zero m—>
(Sparsification)
Quantization

voey — [W000
@@@ uantzation @@@@
636969 @9 OO
QOO

Reduce the precision of numbers

Round to the closest integer

3-bit Quantization: Clip the data larger than 7

25



Sparsity Challenges

The perplexity of models becomes too
below 50% sparsity!
« Maximum 2 X reduction in model size
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Perplexity

20
18

16

-
N A

—
o

oy @

LLaMA-2-13B
Sparsity Sensitivity Analysis

—— Wanda
—— SparseGPT

E=
(=Y

10 20 30 40 50 60
Sparsity Ratio (%)

| indicates better performance.
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Quantization Challenges

The perplexity of models becomes too big
below 4-bit quantization!

. T _ LLaMA-2-13B
« Maximum 4 X reduction in model size 10 Quantization Sensitivity Analysis
——  Group AbsMax
9 — OPTQ
8
=
3 7
—
Y
6
2
a
4_
0 2 4 6 8 10 12 14 16

Quantization Bitwidth

A lower quantization bit width is desired 27



Higher Compression Ratios

8 x Compression ratio case study:

Average Accuracy on 6 LM Harness Tasks’

Method LLaMA-2-7B LLaMA-2-13B
Dense 56.6% 60.8%
87.5% Sparse™ 31.06% 31.59%
2-bit Quantization™" 31.81% 31.68%
4-bit Quantization + 50% Unstructured Sparsity 53.62% 57.00%
4-bit Quantization + 2:4 Sparsity 45.49% 51.05%

Combining sparsity and quantization gives better accuracy vs
guantization or sparsity alone!

"The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA
“Best method among Wanda and SparseGPT
“"Best method among AbsMax and OPTQ



https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2210.17323

Higher Compression Ratios

8 x Compression ratio case study:

Average Accuracy on 6 LM Harness Tasks’

Method LLaMA-2-7B LLaMA-2-13B
Dense 56.6% 60.8%
87.5% Sparse™ 31.06% 31.59%
2-bit Quantization™" 31.81% 31.68%
4-bit Quantization + 50% Unstructured Sparsity 53.62% 57.00%
4-bit Quantization + 2:4 Sparsity 45.49% 51.05%

However, the accuracy gap between compressed and dense models is large!

"The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA
“Best method among Wanda and SparseGPT
“"Best method among AbsMax and OPTQ
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Accuracy Recovery with Low-rank Adapters

Low-rank adapters can help recover the accuracy of the models??
Challenge: They require millions of tokens to train if acquired from training
Solution: One-shot Low-rank Adapters compute LR mathematically with no training need

[1] Dettmers et al.. QLoRA: Efficient Finetuning of Quantized LLMs (NeurlPS23) 30
[2] Nikdan et al., RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation (ICML24)
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Eg: Sparsity Error
S L . M O . Eo: Quantization Error
I ‘ Ve rV I eW L, R: Low-rank Adapters
WS: Sparse Weight
wg: Sparse and Quantized Weight

Quantized Elements

Low-rank

ﬁ

Compensation

31



SLiM | One-shot Pruning Method

Wanda

Pruning

Eg: Sparsity Error

Eq: Quantization Error

L, R: Low-rank Adapters

WS: Sparse Weight

wg: Sparse and Quantized Weight

—

SLiM uses an off-the-shelf method (Wanda®) for one-shot pruning.

[1] Sun et al.. A Simple and Effective Pruning Approach for Large Language Models

32
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Es: Sparsity Error
SLiM | Quantization E,: Quantization Error
L, R: Low-rank Adapters
WS: Sparse Weight
wg: Sparse and Quantized Weight

_ a

Quantized Elements

SLiM finds a tractable solution for minimizing the quantization error using novel a

probabilistic approach.
33
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q: Quantization Bitwidth
Q: Quantization Function

Uniform Quantization | 7o weignt PP

Uniform quantization uses a single parameter per tensor to quantize the weight.

* The values larger than a™ get clipped: Wy = Clip(%, +1) x 2971

« Tuning Parameter a* — Minimize the MSE of the quantization.

* . _ 2
a —argmén|W WQ|

|

Non-convex np-hard problem!
Prior work! approximately solves it through exhaustive search.

n

Frequency

34

[1] Zhao et al., Atom: Low-bit Quantization for Efficient and Accurate LLM Serving



https://arxiv.org/abs/2310.19102
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Q: Quantization Function

q: Quantization Bitwidth
f(x): Weight PDF

Uniform Quantization | SLiM-Quant

SLiM-Quant uses a probabilistic approach to formulate the objective function in uniform
guantization

a M
a* = argmin|W — WQ|2 > a’ = argminf Q(x)f(x)dx + f lx —al?f(x)dx
a 0 a

Frequency of weight values

f(x): Weight probability density function 35



Es: Sparsity Error
LOW_ ra n k Ad a te rS Eo: Quantization Error
p L, R: Low-rank Adapters
WS: Sparse Weight
wg: Sparse and Quantized Weight

_ a

Goal: Reduce the error added due to pruning and quantization.

Quantized Elements

Low-rank

ﬁ

Compensation

36



Low-rank Adapters | Naive-LoRA

Error Norm Minimization

-

o

L",R" = argmin|W — (WC}9 + LR)|
L*,R* = argmin|Es + E, — LR|

L*,R* = SVD(Es + E,)

~

)

. =

Eg: Pruning Error
E,: Quantization Error

F: Saliency Function

Es

® .OO Quantization @800
OCOQ oéoe
OQOO @800
0000 8800
@7}
Eq

Error norm does not take the importance (saliency) of the weights into account.

37
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Eg: Pruning Error

Low-rank Adapters | SLiM-LoRA Gk

x: Average Calibration Input

Error Saliency Minimization

/ L*,R* = argmin |[F (W — (W§ + LR))‘\ —
w

SN
L*,R* = argmin|F(Es + E, — LR)| D

Es

Minimizing the saliency of the reconstruction error!

\_ /

38
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Eg: Pruning Error s

Low-rank Adapters | SLiM-LoRA Gk

x: Average Calibration Input

Error Saliency Minimization

Pruning 5:89 Quantization gggg
/L*,R* = argmin|F (W — (Wg + LR))‘\ ::88 — > [s200
S WQS'

L",R™ = argm1n|F(ES+EQ —LR)| ?
Minimizing the saliency of the reconstruction error! Es Eq

Saliency Function : F(W) = diag(x)W

\L*,R* diag ( > (SVD(dlag(x)ES + EQ)/

The low-rank adapters in SLIM
are further quantized to 4-bits!

39



SLiM | Zero-shot Accuracy Results

SLIM achieves up to 5.7%
accuracy improvement over
SOTA compression methods!

Average Accuracy over 6 Zero-shot tasks

2:4 Sparsity with 4-bit Weight Quantization

125M  350M 1.3B 2.7B 6.7B
SOTA’ 33.70  33.38 38.75 40.15 44 .32 45.64 45.49 51.05
Naive-LoRA 3428 33.38 38.36 41.21 44 .91 45.25 48.45 51.94
SLiM-LoRA 3462 34.36 40.61 42.73 45.99 46.24 51.15 54.94

Unstructured Sparsity with 4-bit Weight Quantization

125M  350M 1.3B 2.7B 6.7B
SOTA’ 35.11 35.16 41.02 43.43 46.97 47.38 53.62 57.00
Naive-LoRA 34.77 34.23 40.40 43.37 46.64 47.30 51.52 55.33
SLiM-LoRA 35.20 35.32 41.85 43.63 47.16 47.96 54.26 57.85

"SOTA refers to the best accuracy among SparseGPT and Wanda
for pruning and OPTQ, AWQ, AbsMax, OmniQuant, and Affine Quant

for quantization.

40
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SLIM | Speedup and Memory Reduction

SLiM Speedup on RTX 3060

oA T[Sl
Batch Size 1?{}) Batch Size 32 Batch Size 64

SLiM achieves up to 4.3 x speedup on g 5
RTX3060 GPUs and up to 3.8 X speedup on 7% 5
A100 GPUs vs dense on LLaMA-2 models! 7]
SLiM leads to consistent memory reduction on B
different models and GPUs! 5

c%)' -

Speedup (%)
LLaMA-2-70B

B Lo AL (o) AU Vo \ LN Yo | AR o) AR Vo AN . (¢ A Y| AR Vo A
oW oW



SLIM | Larger Compressed vs. Smaller Dense |

For a given parameter size budget, SLiM

outperforms
dense models!

other

methods,

including

N
N
()]

Accuracy
w B
~ o
o o

475+

45.0 -

Q: Quantized LoRA
FT. Fine-tuning

|

Accuracy vs. Model Parameter Size (2:4 Sparsity)

P2 —e - Dense Model
SLiM-LoRA® + SLiM-Quant
—k— SLiM-LoRA? + SLiM-Quant (FT)
WANDA + Best Quantization

—e - SparseGPT + OPTQ

10° 10° 10"

Model size-GB
The accuracy results are from OPT family of models.
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Outline

Model Compression in Pretraining

« SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of
LLMs Lazy Low-rank Adapters [ICLR'25]

Model Compression at Inference

« SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for
LLM Weight Compression [ICML’25]

Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

« STOICC: A Compiler for Tile-based Sparsity
STOICC
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Inspector-Executor Tools for Sparsity

Compilers must optimize sparse matrix operations to achieve performance.

Sparse Matrix

)

= zero entry

[PLDI'23] L. Wilkinson, K. Cheshmi, and M. M. Dehnavi, ‘Register Tiling for Unstructured Sparsity in Neural Network Inference’, Proc. ACM Program. Lang.,

vol. 7, no. PLDI, Jun. 2023.

Inspector

e

Reordering,
compression and
scheduling based on
sparsity pattern

Data &

Metadata

Schedule

)
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STOICC Executor: Built in Triton!

The executor performs the SpMM according to the schedule.

---------------------------

REEEEEEEEEE Inspector ¢® ---------- . Launch grid with one Triton program per tile of output matrix D.

---------------------------

L. Each program iterates over a row of A and column of B according to the schedule.
: Tiles of A: Prog &

sparse_col [1]2]1|0 Sparse|§ for row, col in grid: { Executor 0 Ji

sparse_row |02 |3 |4 ; acc_tile = 0

; for 1 in range(sparse_row[row], sparse row[row + 1]):
sparse_val : acc_tile += dot(sparse _val[i], B[sparse col[1]][col])

dense col [0 (1]2 (1|2

0O(1]|3]|5 1
dense_row D[row, col] = acc tile

Dense|Dense|Dense [Dense|Dense
dense_val 0 1 5 3 4

45



Summary

Model Compression

 SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs
Lazy Low-rank Adapters [ICLR25]

« SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for
LLM Weight Compression [ICML25]

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUSs!
« STOICC: A Compiler for Tile-based Sparsity

l_ _\
N\ L/

Compression Trinity Webpage

https://paramathic.github.io/stoicc-docs/

: : e 4
https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index. html °
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