Enabling Sparsity in Al Workloads

Maryam Mehri Dehnavi

Outline

Model Compression in Pretraining

 SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs Lazy Low-rank Adapters [ICLR'25]

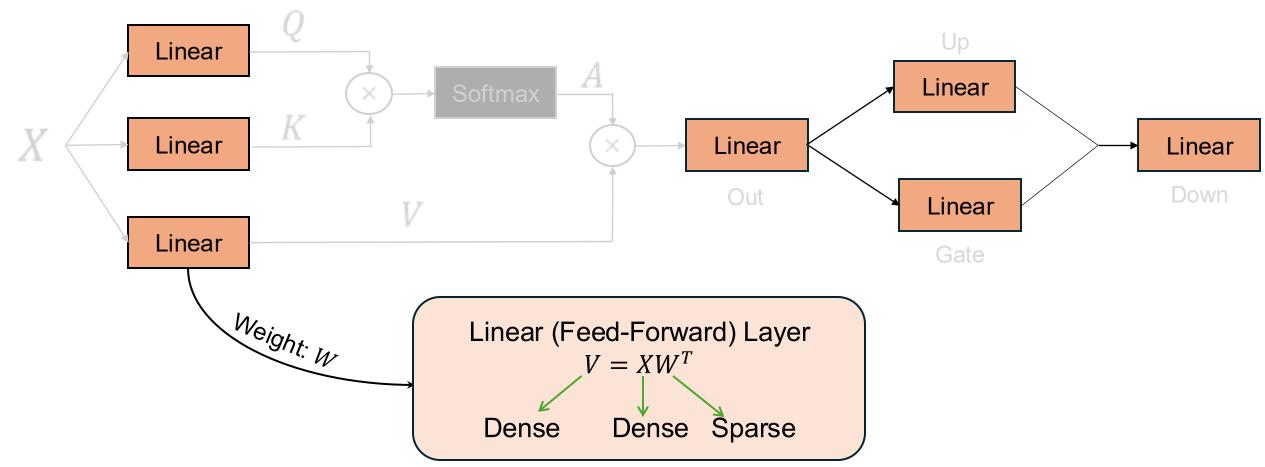
Model Compression at Inference

 SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [ICML'25]
 Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

• **STOICC**: A Compiler for Tile-based Sparsity

LLM Compute Graph | Weight Sparsity



LLM Compute Graph | Weight Sparsity

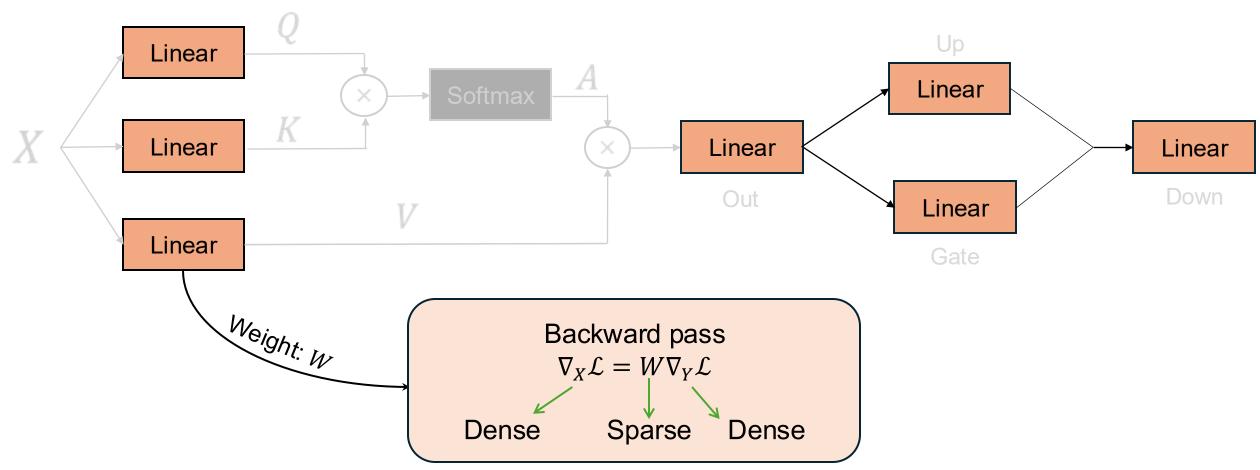
Y: Output

X: Input

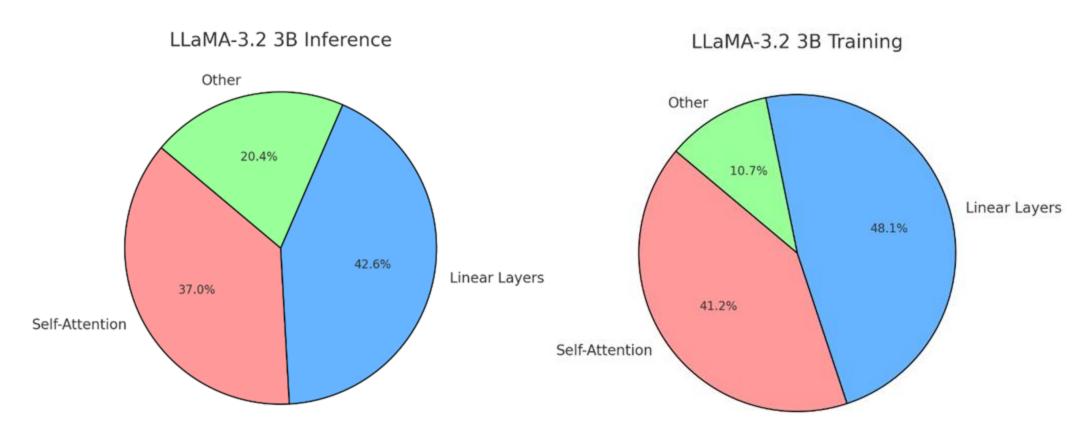
W: Weight

∇: Gradient

 $\mathcal{L} \text{: Loss}$



LLM Compute Graph | Time Breakdown



Linear Layers are the bottleneck in both training and inference.

Outline

Model Compression in Pretraining

 SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs Lazy Low-rank Adapters [ICLR'25]

Model Compression at Inference

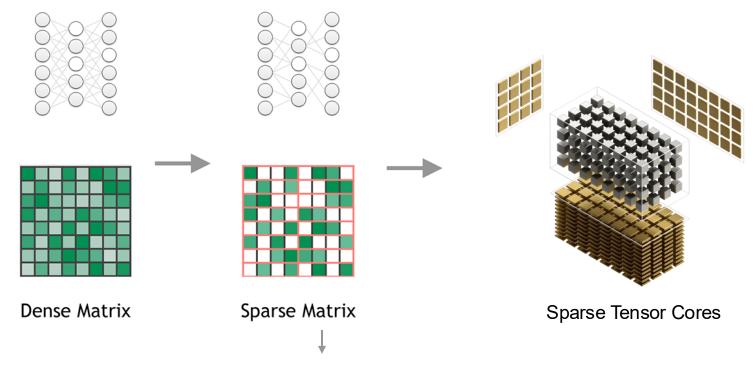
 SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [ICML'25]

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models n on GPUs!

• STOICC: A Compiler for Tile-based Sparsity

Weight Sparsity | Sparse Tensor Cores

We focus on 2:4 sparsity because NVIDIA sparse tensor cores!



2:4 Sparsity → 2 out of 4 consecutive elements are zero

Static vs. Dynamic Sparsity in Pretraining

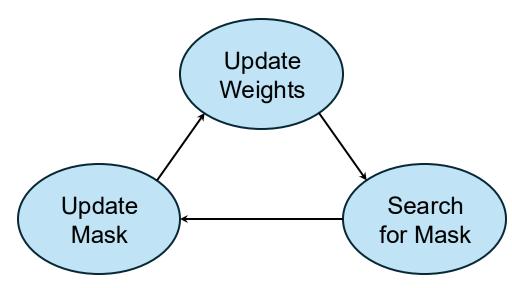
Static Sparsity¹

- ☑ Memory Reduction
- No compute overhead

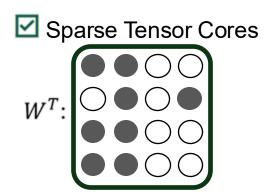
Fix Update Weights

Dynamic Sparsity²

- Requires storing dense weights, gradients, and optimizer states
- Mask search and update overhead

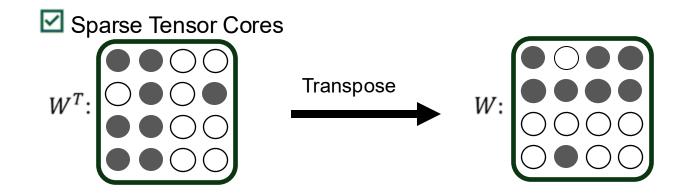


Sparse Training | Forward Pass



Forward Pass: $Y = XW^T$

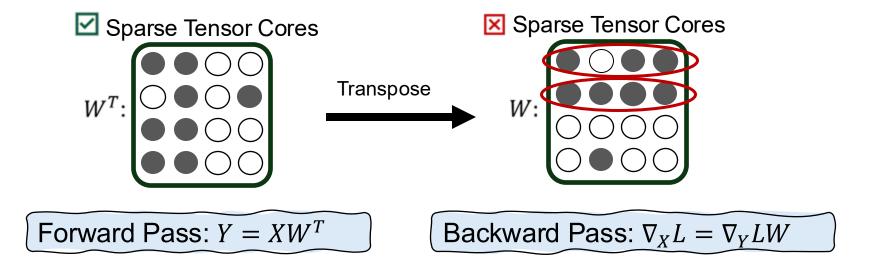
Sparse Training | Backward Pass



Forward Pass: $Y = XW^T$

Backward Pass: $\nabla_X L = \nabla_Y LW$

Sparse Training | Backward Pass | Challenges



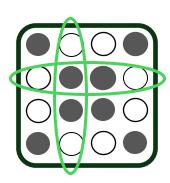
Sparse Training | Backward Pass | Prior Solutions

Prior work^{1,2} uses transposable masks \rightarrow Both W and W^T are 2:4 sparse

Challenge: The sparsity is limited to very few 2:4 patterns → Accuracy Loss

In SLoPe we allow the forward pass to have an arbitrary 2:4 pattern

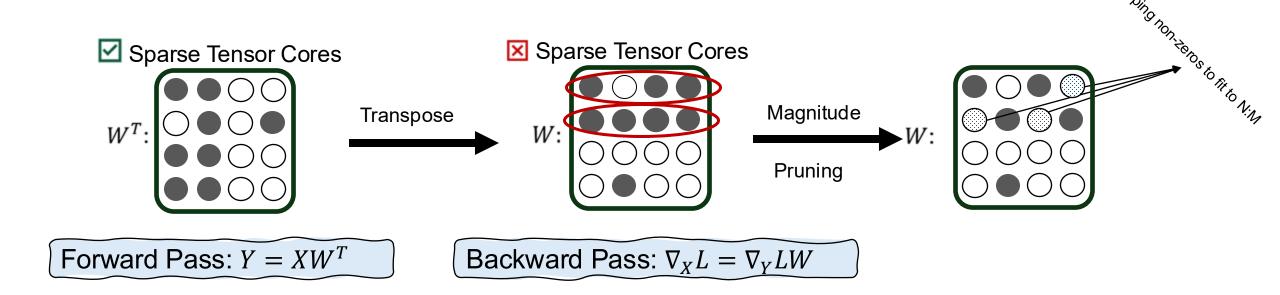
Double Pruned Backward Pass will solve the issue



Both rows and columns have 2:4 sparsity

Sparse Training | Double Pruned Backward Pass

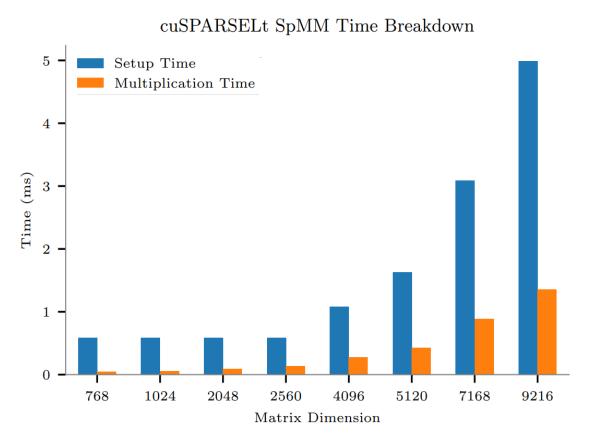
Prune the transposed weight again in the backward pass



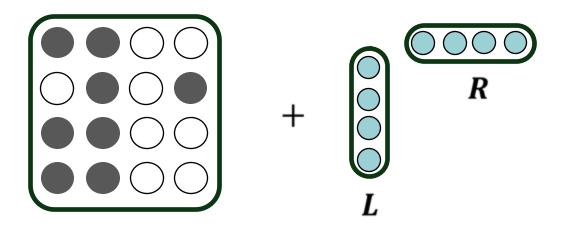
SLoPe | SpMM Setup Overhead

Pruning and preparing the weights in every iteration is expensive!

 SLoPe prunes and prepares W in the backward pass every 100 iterations

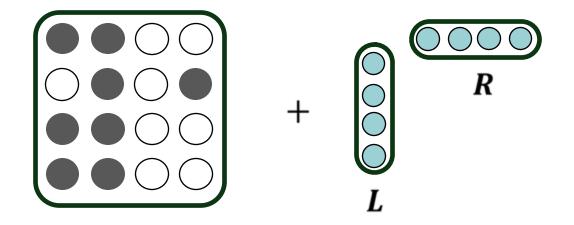


SLoPe | Lazy Low-rank Adapters (LoRA)



$$W = W_{sparse} + LR$$

SLoPe | Lazy Low-rank Adapters (LoRA)



$$W = W_{sparse} + LR$$

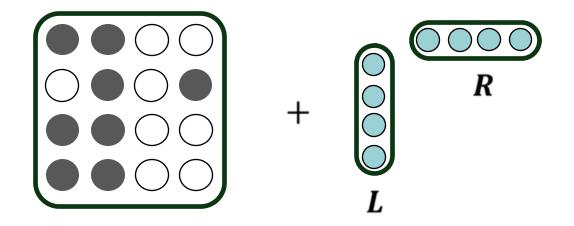
Complexity	Sparse + Low-rank	Dense		
Memory	$\frac{d^2}{2} + 2rd$	d^2		
Compute	$\frac{bd^2}{2} + 2brd$	bd^2		

SLoPe | Lazy Low-rank Adapters (LoRA)

d: Hidden Dimension

r: Adapter Rank

b: Batch Size



$$W = W_{sparse} + LR$$

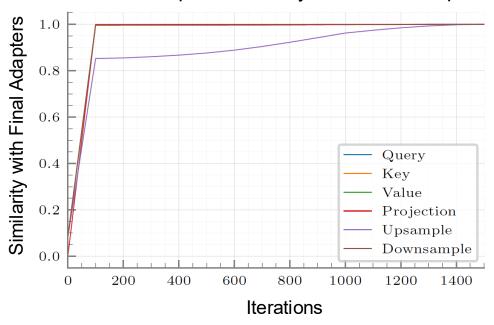
Complexity	Sparse + Low-rank	Dense
Memory	$\frac{d^2}{2} + 2rd$	d^2
Compute	$\frac{bd^2}{2} + 2brd$	bd^2

Since $r \ll d$, the memory and compute overhead is negligible.

SLoPe | Lazy Low-rank Adapters | Convergence Rate

LoRA has a fast convergence rate!

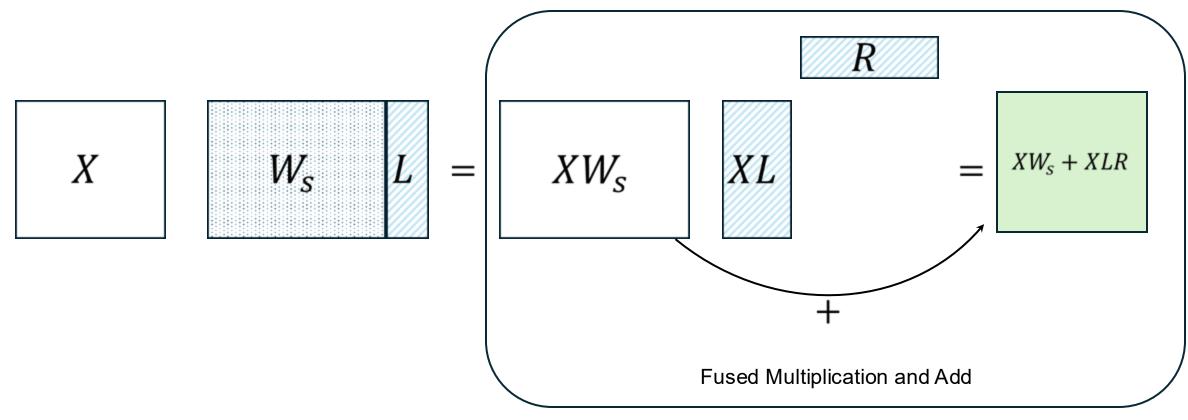
BERT-Large-Uncased
Low-rank Adapter Similarity with Final Adapters



SLoPe adds LoRA in the last 1% training iterations! (Lazy Low-rank Adapters (L

SLoPe | Combined SpMM and Low-rank Adapters

- Low arithmetic intensity in low-rank adapters
 - Solution: Combines SpMM and Low-rank adapters



SLoPe | Results | GPT2 Zero-shot Accuracy

Comparison: We compare SLoPe against state of the art 2:4 sparse pretraining work (Ext. SR-STE^{1,2})

SLoPe outperforms prior work in 6 out of 8 tasks!

GPT2 Small

Dataset	Dense	Ext. SR-STE	SLoPe
MMLU	22.9	24.2	23.0
Arc Challenge	20.7	18.4	19.4
OpenBookQA	16.2	14.2	16.4
WinoGrande	50.6	47.5	50.8
HellaSwag	28.5	26.9	27.5
MathQA	21.8	21.4	20.8
PIQA	59.8	55.2	57.6
RACE	28.4	24.2	27.2

SLoPe | Results | Speedup and Memory Reduction

Speedup (vs. Dense)

Training: 1.25× Inference: 1.54×

Memory Reduction (vs. Dense)

Training: 0.63× Inference: 0.51×

Outline

Model Compression in Pretraining

 SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs Lazy Low-rank Adapters [ICLR'25]

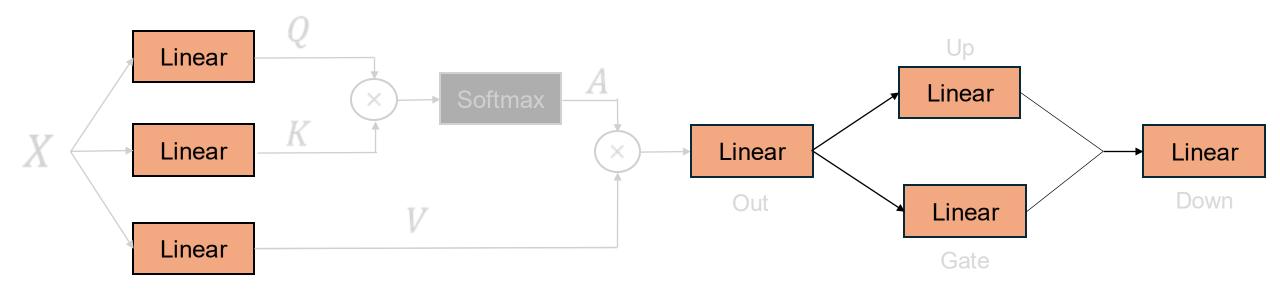
Model Compression at Inference

 SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [ICML'25]
 Compression Trinity Webpage

A Compiler for Rapid Prototyping Sparsity and Quantization of Models on GPUs

STOICC: A Compiler for Tile-based Sparsity

LLM Compute Graph | Sparse Inference

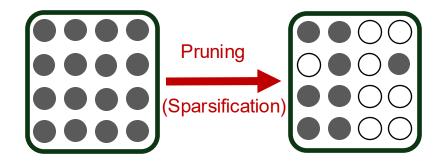


For large models, it might not be feasible to train models for sparsity, SLiM focuses on introducing sparsity at post training!

Post-training Compression Methods

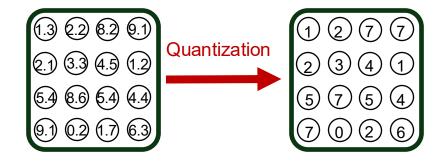
Sparsity

Set non-important weights to zero



Quantization

Reduce the precision of numbers



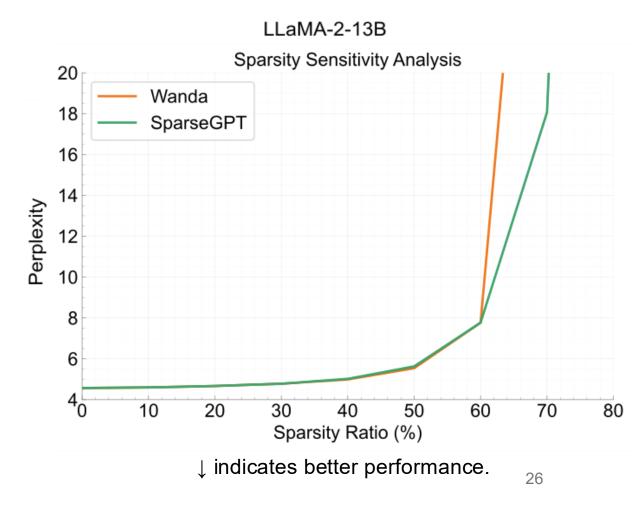
3-bit Quantization:

Round to the closest integer Clip the data larger than 7

Sparsity Challenges

The perplexity of models becomes too big below 50% sparsity!

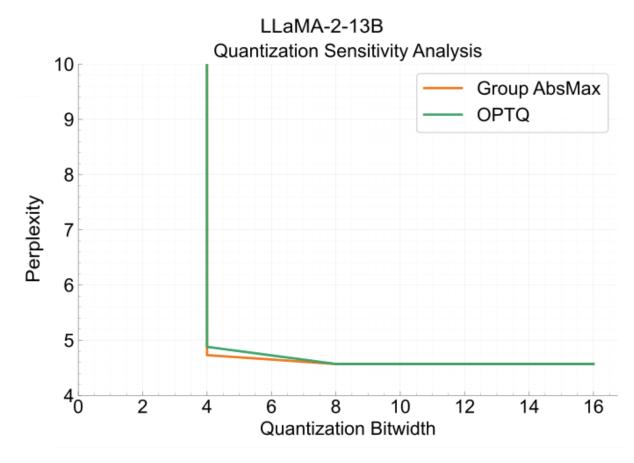
Maximum 2 × reduction in model size



Quantization Challenges

The perplexity of models becomes too big below 4-bit quantization!

Maximum 4 × reduction in model size



Higher Compression Ratios

$8 \times \text{Compression ratio case study}$:

Average Accuracy on 6 LM Harness Tasks*

Method	LLaMA-2-7B	LLaMA-2-13B
Dense	56.6%	60.8%
87.5% Sparse**	31.06%	31.59%
2-bit Quantization***	31.81%	31.68%
4-bit Quantization + 50% Unstructured Sparsity	53.62%	57.00%
4-bit Quantization + 2:4 Sparsity	45.49%	51.05%

Combining sparsity and quantization gives better accuracy vs quantization or sparsity alone!

^{*}The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA

^{**}Best method among Wanda and SparseGPT

^{***}Best method among AbsMax and OPTQ

Higher Compression Ratios

$8 \times \text{Compression ratio case study}$:

Average Accuracy on 6 LM Harness Tasks*

Method	LLaMA-2-7B	LLaMA-2-13B
Dense	56.6%	60.8%
87.5% Sparse**	31.06%	31.59%
2-bit Quantization***	31.81%	31.68%
4-bit Quantization + 50% Unstructured Sparsity	53.62%	57.00%
4-bit Quantization + 2:4 Sparsity	45.49%	51.05%

However, the accuracy gap between compressed and dense models is large!

^{*}The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA

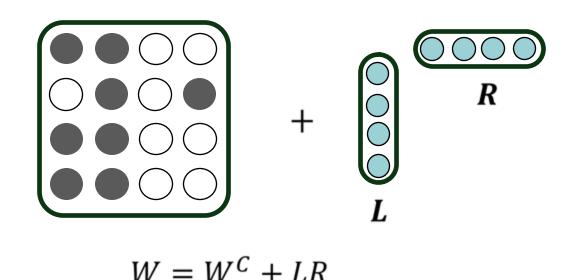
^{**}Best method among Wanda and SparseGPT

^{***}Best method among AbsMax and OPTQ

Accuracy Recovery with Low-rank Adapters

Low-rank adapters can help recover the accuracy of the models^{1,2}

- Challenge: They require millions of tokens to train if acquired from training
- Solution: One-shot Low-rank Adapters compute LR mathematically with no training need



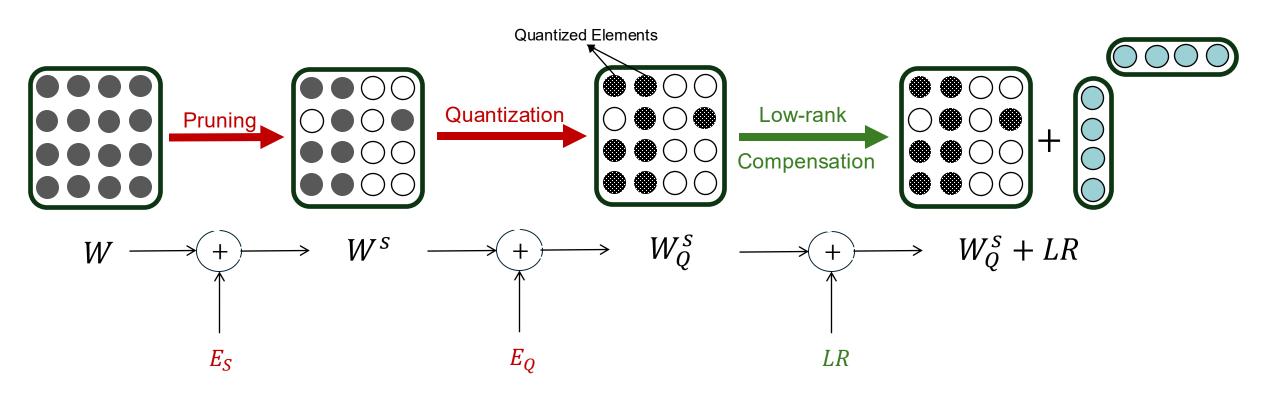
SLiM | Overview

 E_S : Sparsity Error

 E_Q : Quantization Error

L, R: Low-rank Adapters

 W^S : Sparse Weight W_Q^S : Sparse and Quantized Weight



SLiM | One-shot Pruning Method

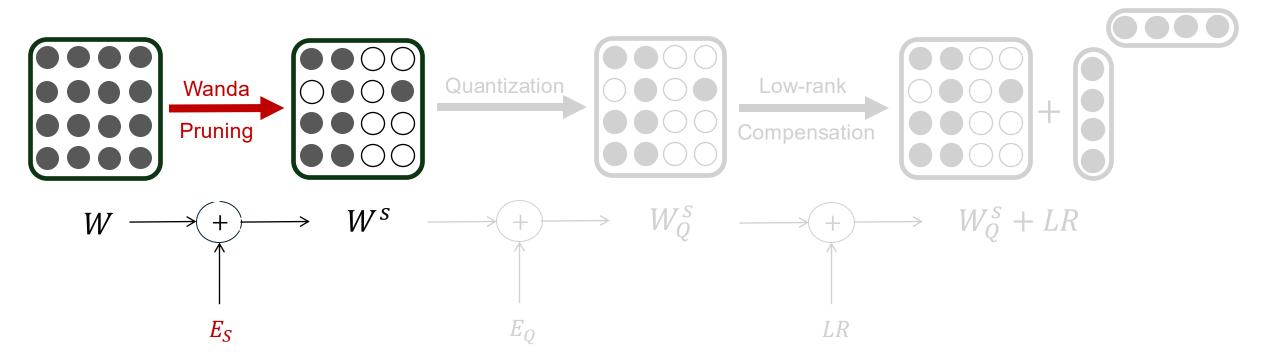
E_S: Sparsity Error

 E_Q : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

 W_0^S : Sparse and Quantized Weight



SLiM uses an off-the-shelf method (Wanda¹) for one-shot pruning.

SLiM | Quantization

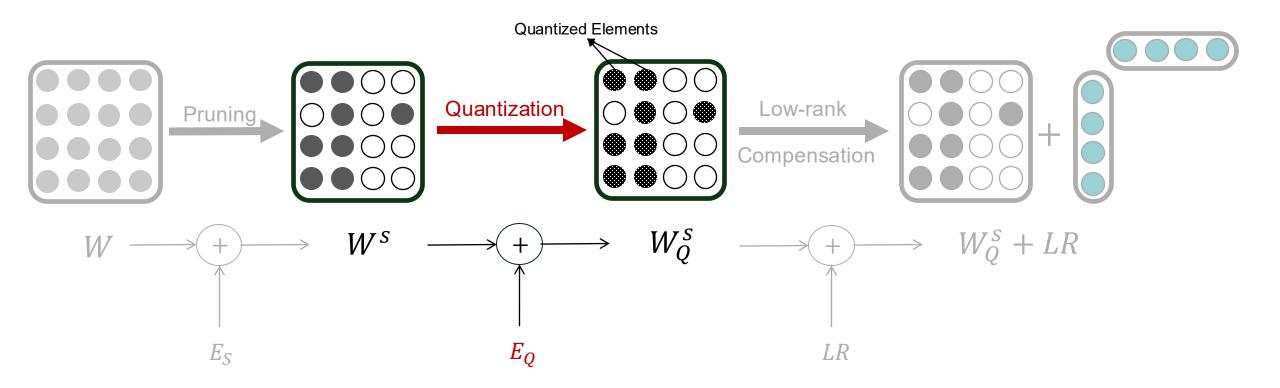
 E_S : Sparsity Error

 E_O : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

 W_0^S : Sparse and Quantized Weight



SLiM finds a tractable solution for minimizing the quantization error using novel a probabilistic approach.

Uniform Quantization

Uniform quantization uses a single parameter per tensor to quantize the weight.

• The values larger than α^* get clipped:

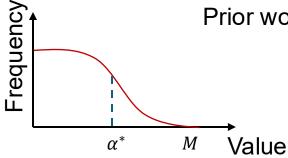
$$W_Q = clip(\frac{W}{\alpha^*}, \pm 1) \times 2^{q-1}$$

• Tuning Parameter $\alpha^* \rightarrow$ Minimize the MSE of the quantization.

$$\alpha^* = \arg\min_{\alpha} |W - W_Q|^2$$

Non-convex np-hard problem!

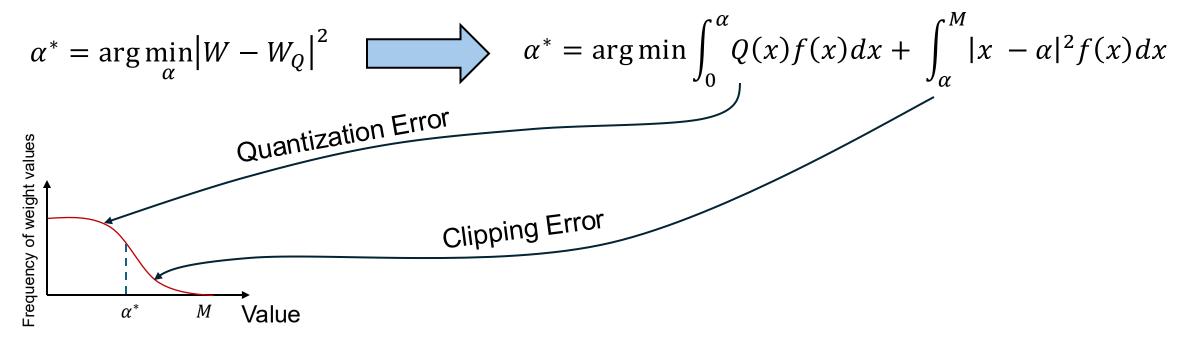
Prior work¹ approximately solves it through exhaustive search.



Uniform Quantization | SLiM-Quant

q: Quantization Bitwidth Q: Quantization Function f(x): Weight PDF

SLiM-Quant uses a probabilistic approach to formulate the objective function in uniform quantization



f(x): Weight probability density function

Low-rank Adapters

 E_S : Sparsity Error

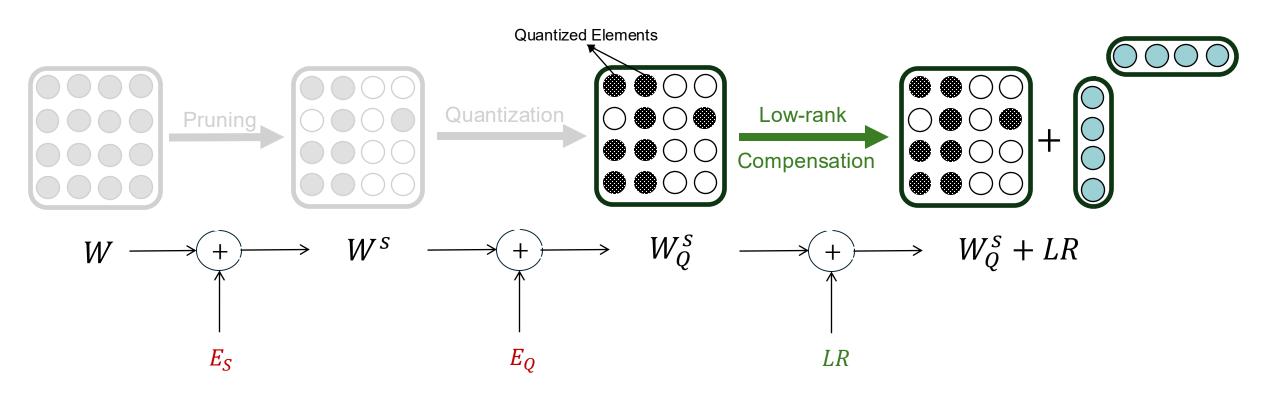
 E_O : Quantization Error

L, R: Low-rank Adapters

W^S: Sparse Weight

 W_0^S : Sparse and Quantized Weight

Goal: Reduce the error added due to pruning and quantization.

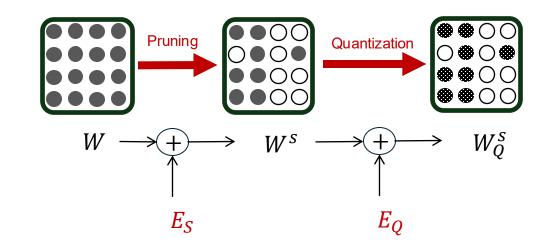


Low-rank Adapters | Naïve-LoRA

 E_S : Pruning Error E_Q : Quantization Error F: Saliency Function

Error Norm Minimization

$$L^*, R^* = \arg\min |W - (W_Q^S + LR)|$$
 $L^*, R^* = \arg\min |E_S + E_Q - LR|$
 $L^*, R^* = SVD(E_S + E_Q)$



Error norm does not take the importance (saliency) of the weights into account.

Low-rank Adapters | SLiM-LoRA

 E_S : Pruning Error

 E_O : Quantization Error

F: Saliency Function

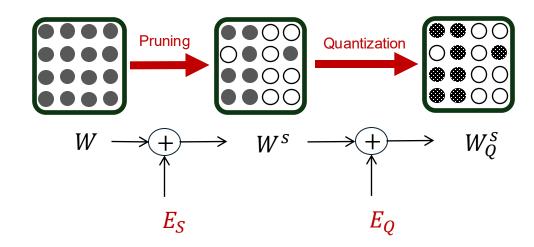
 \bar{x} : Average Calibration Input

Error Saliency Minimization

$$L^*, R^* = \arg\min \left| F\left(W - \left(W_Q^S + LR\right)\right) \right|$$

$$L^*, R^* = \arg\min \left| F\left(E_S + E_Q - LR\right) \right|$$

Minimizing the saliency of the reconstruction error!



Low-rank Adapters | SLiM-LoRA

 E_S : Pruning Error

 E_Q : Quantization Error

F: Saliency Function

 \bar{x} : Average Calibration Input

Error Saliency Minimization

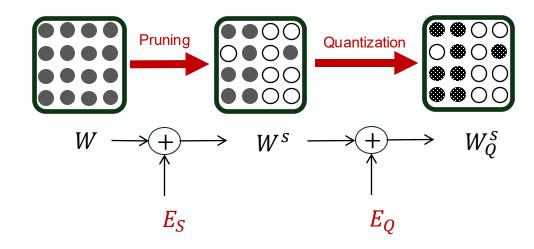
$$L^*, R^* = \arg\min \left| F\left(W - \left(W_Q^S + LR\right)\right) \right|$$

 $L^*, R^* = \arg\min \left| F\left(E_S + E_Q - LR\right) \right|$

Minimizing the saliency of the reconstruction error!

Saliency Function : $F(W) = diag(\bar{x})W$

$$L^*, R^* = diag\left(\frac{1}{\bar{x}}\right) \left(SVD\left(diag(\bar{x})E_S + E_Q\right)\right)$$



The low-rank adapters in SLiM are further quantized to 4-bits!

SLiM | Zero-shot Accuracy Results

Average Accuracy over 6 Zero-shot tasks

2:4 Sparsity with 4-bit Weight Quantization

SLiM achieves up to 5.7% accuracy improvement over SOTA compression methods!

Method		OPT						IMA 2
	125M	350M	1.3B	2.7B	6.7B	13B	7B	13B
SOTA*	33.70	33.38	38.75	40.15	44.32	45.64	45.49	51.05
Naïve-LoRA	34.28	33.38	38.36	41.21	44.91	45.25	48.45	51.94
SLiM-LoRA	34.62	34.36	40.61	42.73	45.99	46.24	51.15	54.94

Unstructured Sparsity with 4-bit Weight Quantization

Method		OPT						LLaMA 2	
	125M	350M	1.3B	2.7B	6.7B	13B	7B	13B	
SOTA*	35.11	35.16	41.02	43.43	46.97	47.38	53.62	57.00	
Naïve-LoRA	34.77	34.23	40.40	43.37	46.64	47.30	51.52	55.33	
SLiM-LoRA	35.20	35.32	41.85	43.63	47.16	47.96	54.26	57.85	

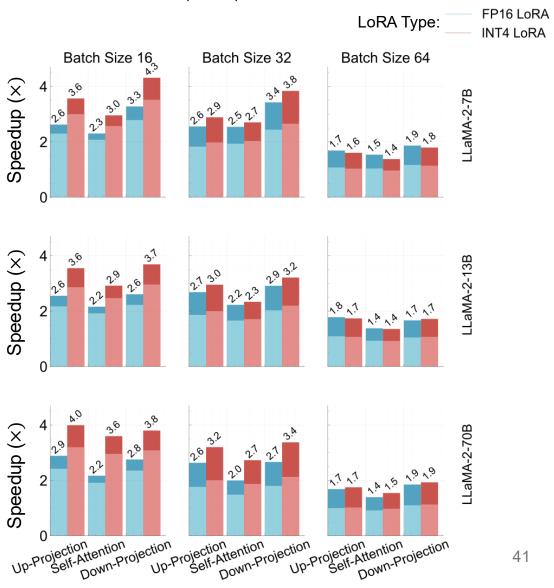
^{*}SOTA refers to the best accuracy among <u>SparseGPT</u> and <u>Wanda</u> for pruning and <u>OPTQ</u>, <u>AWQ</u>, AbsMax, <u>OmniQuant</u>, and <u>AffineQuant</u> for quantization.

SLiM | Speedup and Memory Reduction

SLiM Speedup on RTX 3060

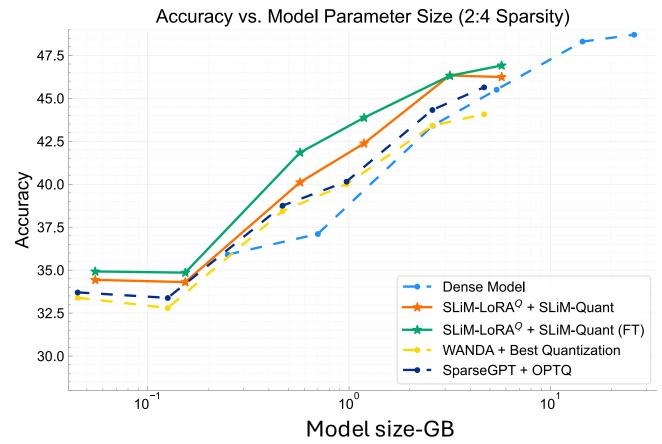
SLiM achieves up to $4.3 \times$ speedup on RTX3060 GPUs and up to $3.8 \times$ speedup on A100 GPUs vs dense on LLaMA-2 models!

SLiM leads to consistent memory reduction on different models and GPUs!



SLiM | Larger Compressed vs. Smaller Dense

For a given parameter size budget, SLiM outperforms other methods, including dense models!



The accuracy results are from OPT family of models.

Outline

Model Compression in Pretraining

 SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs Lazy Low-rank Adapters [ICLR'25]

Model Compression at Inference

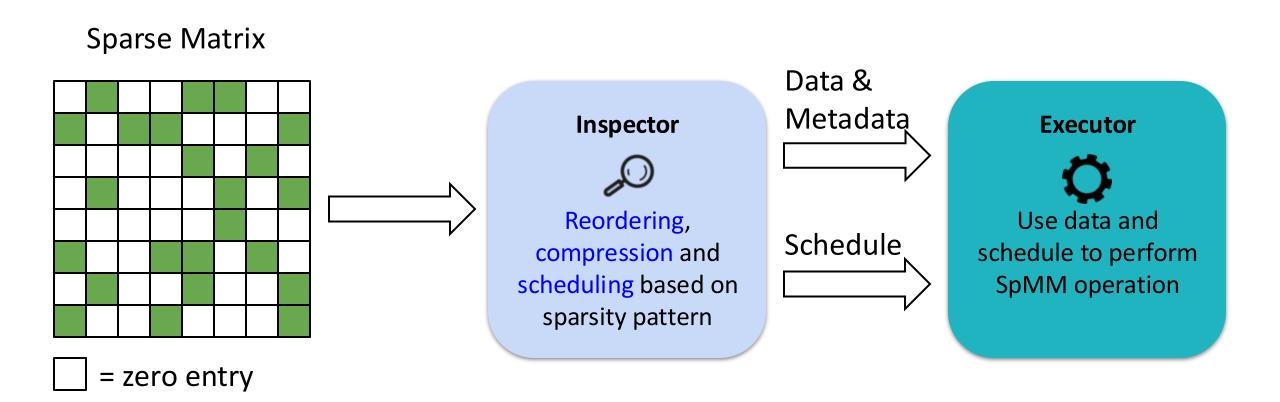
 SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [ICML'25]
 Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

• STOICC: A Compiler for Tile-based Sparsity

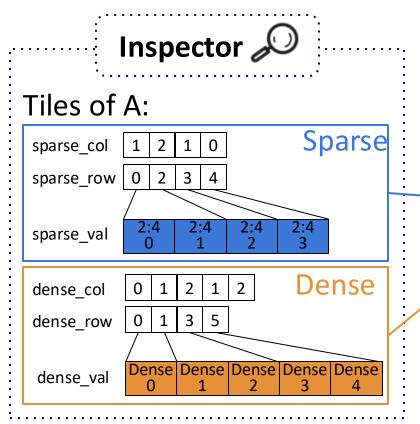
Inspector-Executor Tools for Sparsity

Compilers must optimize sparse matrix operations to achieve performance.



STOICC Executor: Built in Triton!

The executor performs the SpMM according to the schedule.



Launch grid with one Triton program per tile of output matrix D.

Each program iterates over a row of A and column of B according to the schedule.

```
for row, col in grid:
    acc_tile = 0

for i in range(sparse_row[row], sparse_row[row + 1]):
    acc_tile += dot(sparse_val[i], B[sparse_col[i]][col])
    for i in range(dense_row[row], dense_row[row + 1]):
        acc_tile += dot(dense_val[i], B[dense_col[i]][col])
    D[row, col] = acc tile
```

Summary

Model Compression

- SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs Lazy Low-rank Adapters [ICLR'25]
 - SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [ICML'25]

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

STOICC: A Compiler for Tile-based Sparsity

