
1

Enabling Sparsity in AI Workloads

Maryam Mehri Dehnavi

University of Toronto
 

NVIDIA Research



Outline

2

Model Compression in Pretraining 

• SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of 

LLMs Lazy Low-rank Adapters [ICLR’25]

Model Compression at Inference

• SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for 

LLM Weight Compression [ICML’25]
Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

• STOICC: A Compiler for Tile-based Sparsity
STOICC

https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html
https://paramathic.github.io/stoicc-docs/


LLM Compute Graph | Weight Sparsity

3

Linear

Linear

Linear

Softmax

Linear (Feed-Forward) Layer

𝑉 = 𝑋𝑊𝑇

Dense       Dense   Sparse

Linear

Linear

Linear

Out

Gate

Down

Linear

Up



LLM Compute Graph | Weight Sparsity

4

Linear

Linear

Linear

Softmax

Backward pass

∇𝑋ℒ = 𝑊∇𝑌ℒ

Dense         Sparse     Dense

Linear

Linear

Linear

Out

Gate

Down

Linear

Up

𝑌: Output

𝑋: Input
𝑊: Weight
∇: Gradient

ℒ: Loss



LLM Compute Graph | Time Breakdown

5

Linear Layers are the bottleneck in both training and inference.



Outline

6

Model Compression in Pretraining 

• SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of 

LLMs Lazy Low-rank Adapters [ICLR’25]

Model Compression at Inference

• SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for 

LLM Weight Compression [ICML’25]

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models n on GPUs!

• STOICC: A Compiler for Tile-based Sparsity



Weight Sparsity | Sparse Tensor Cores

7

Sparse Tensor Cores

2:4 Sparsity → 2 out of 4 consecutive elements are zero

We focus on 2:4 sparsity because NVIDIA sparse tensor cores!



Static Sparsity1

Memory Reduction

No compute overhead

8

Dynamic Sparsity2

Requires storing dense weights, 
gradients, and optimizer states 

Mask search and update overhead

Update 

Weights

Search 

for Mask

Update 

Mask

Update 

Weights

Fix 

Mask

[1] Thangasara et al., SPDF: Sparse Pre-training and Dense Fine-tuning for Large Language Models (UAI23)

[2] Hu et al., Accelerating Transformer Pre-training with 2:4 Sparsity (ICML24)

Static vs. Dynamic Sparsity in Pretraining

https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2303.10464
https://arxiv.org/abs/2404.01847
https://arxiv.org/abs/2404.01847
https://arxiv.org/abs/2404.01847


Sparse Training | Forward Pass

9

Sparse Tensor Cores

Forward Pass: 𝑌 = 𝑋𝑊𝑇



Sparse Training | Backward Pass

10

Transpose

Sparse Tensor Cores

Forward Pass: 𝑌 = 𝑋𝑊𝑇 Backward Pass: ∇𝑋𝐿 = ∇𝑌𝐿𝑊



Sparse Training | Backward Pass | Challenges

11

Transpose

Sparse Tensor Cores Sparse Tensor Cores

Backward Pass: ∇𝑋𝐿 = ∇𝑌𝐿𝑊Forward Pass: 𝑌 = 𝑋𝑊𝑇



Sparse Training | Backward Pass | Prior Solutions

12

Prior work1,2 uses transposable masks → Both 𝑊 and 𝑊𝑇 are 2:4 sparse

• Challenge: The sparsity is limited to very few 2:4 patterns → Accuracy Loss

In SLoPe we allow the forward pass to have an arbitrary 2:4 pattern

• Double Pruned Backward Pass will solve the issue

[1] Hubara et al., Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks (NeurIPS21)

[2] Zhang et al., Bi-directional Masks for Efficient N:M Sparse Training(ICML23)

Both rows and columns have 2:4 sparsity

https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2102.08124
https://arxiv.org/abs/2302.06058
https://arxiv.org/abs/2302.06058
https://arxiv.org/abs/2302.06058


Magnitude

Pruning

Sparse Training | Double Pruned Backward Pass 

13

Prune the transposed weight again in the backward pass

Transpose

Sparse Tensor Cores Sparse Tensor Cores

Backward Pass: ∇𝑋𝐿 = ∇𝑌𝐿𝑊Forward Pass: 𝑌 = 𝑋𝑊𝑇



SLoPe | SpMM Setup Overhead

14

Pruning and preparing the weights in every 

iteration is expensive! 

• SLoPe prunes and prepares 𝑊 in the 

backward pass every 100 iterations



SLoPe | Lazy Low-rank Adapters (LoRA)

15



SLoPe | Lazy Low-rank Adapters (LoRA)

16

Sparse + Low-rank Dense

Memory

Compute

Complexity

𝑑: Hidden Dimension

𝑟: Adapter Rank
𝑏: Batch Size



SLoPe | Lazy Low-rank Adapters (LoRA)

17

Sparse + Low-rank Dense

Memory

Compute

Complexity

𝑑: Hidden Dimension

𝑟: Adapter Rank
𝑏: Batch Size



SLoPe | Lazy Low-rank Adapters | Convergence Rate 

18

LoRA has a fast convergence rate!

SLoPe adds LoRA in the last 1% training iterations!

(Lazy Low-rank Adapters            )

Iterations

S
im

il
a
ri
ty

 w
it
h
 F

in
a
l 
A

d
a

p
te

rs

Low-rank Adapter Similarity with Final Adapters

BERT-Large-Uncased



19

Fused Multiplication and Add

SLoPe | Combined SpMM and Low-rank Adapters

• Low arithmetic intensity in low-rank adapters

• Solution: Combines SpMM and Low-rank adapters



SLoPe | Results | GPT2 Zero-shot Accuracy

20

Dataset Dense Ext. SR-STE SLoPe

MMLU 22.9 24.2 23.0

Arc Challenge 20.7 18.4 19.4

OpenBookQA 16.2 14.2 16.4

WinoGrande 50.6 47.5 50.8

HellaSwag 28.5 26.9 27.5

MathQA 21.8 21.4 20.8

PIQA 59.8 55.2 57.6

RACE 28.4 24.2 27.2

[1] Zhou et al., Learning N:M Fine-grained Structured Sparse Neural Networks From Scratch (ICLR21)

[2] Hu et al., Accelerating Transformer Pre-training with 2:4 Sparsity (ICML24)

GPT2 Small

Comparison: We compare SLoPe against state of 
the art 2:4 sparse pretraining work (Ext. SR-STE1,2)

SLoPe outperforms prior work in 6 out of 8 tasks!

https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2102.04010
https://arxiv.org/abs/2404.01847
https://arxiv.org/abs/2404.01847
https://arxiv.org/abs/2404.01847


SLoPe | Results | Speedup and Memory Reduction

21

Inference: 1.54✕
Training:   1.25✕

Inference: 0.51✕

Training:   0.63✕

Speedup (vs. Dense)

Memory Reduction (vs. Dense)



Outline

23

Model Compression in Pretraining 

• SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of 

LLMs Lazy Low-rank Adapters [ICLR’25]

Model Compression at Inference

• SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for 

LLM Weight Compression [ICML’25]
Compression Trinity Webpage

A Compiler for Rapid Prototyping Sparsity and Quantization of Models on GPUs!

• STOICC: A Compiler for Tile-based Sparsity

https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html


LLM Compute Graph | Sparse Inference

24

Linear

Linear

Linear

Softmax

Linear

Linear

Linear

Out

Gate

Down

Linear

Up

For large models, it might not be feasible to train models for sparsity, SLiM focuses on introducing 

sparsity at post training! 



Post-training Compression Methods

Sparsity

Quantization

25

(Sparsification)

Pruning

Set non-important weights to zero

Reduce the precision of numbers
Quantization

1.3 2.2 8.2 9.1

2.1 3.3 4.5 1.2

5.4 8.6 5.4 4.4

9.1 0.2 1.7 6.3

1 2 7 7

2 3 4 1

5 7 5 4

7 0 2 6

Round to the closest integer

Clip the data larger than 7
3-bit Quantization: 



Sparsity Challenges

26
↓ indicates better performance.

The perplexity of models becomes too big 

below 50% sparsity!

• Maximum 2 × reduction in model size



Quantization Challenges

27A lower quantization bit width is desired 

The perplexity of models becomes too big 

below 4-bit quantization!

• Maximum 4 × reduction in model size



Higher Compression Ratios

28

*The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA 
**Best method among Wanda and SparseGPT
***Best method among AbsMax and OPTQ

8 × Compression ratio case study:

Average Accuracy on 6 LM Harness Tasks*

Method LLaMA-2-7B LLaMA-2-13B

Dense 56.6% 60.8%

87.5% Sparse** 31.06% 31.59%

2-bit Quantization*** 31.81% 31.68%

4-bit Quantization + 50% Unstructured Sparsity 53.62% 57.00%

4-bit Quantization + 2:4 Sparsity 45.49% 51.05%

Combining sparsity and quantization gives better accuracy vs 

quantization or sparsity alone!

https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2210.17323


Higher Compression Ratios

29

*The tasks include MMLU, PIQA, ARC-Easy, ARC-Challenge, WINOGRANDE, and OpenBookQA 
**Best method among Wanda and SparseGPT
***Best method among AbsMax and OPTQ

8 × Compression ratio case study:

Average Accuracy on 6 LM Harness Tasks*

Method LLaMA-2-7B LLaMA-2-13B

Dense 56.6% 60.8%

87.5% Sparse** 31.06% 31.59%

2-bit Quantization*** 31.81% 31.68%

4-bit Quantization + 50% Unstructured Sparsity 53.62% 57.00%

4-bit Quantization + 2:4 Sparsity 45.49% 51.05%

However, the accuracy gap between compressed and dense models is large!

https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2210.17323


30

Low-rank adapters can help recover the accuracy of the models1,2

• Challenge: They require millions of tokens to train if acquired from training

• Solution: One-shot Low-rank Adapters compute 𝐿𝑅 mathematically with no training need 

Accuracy Recovery with Low-rank Adapters

[1] Dettmers et al., QLoRA: Efficient Finetuning of Quantized LLMs (NeurIPS23)

[2] Nikdan et al., RoSA: Accurate Parameter-Efficient Fine-Tuning via Robust Adaptation (ICML24)

https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679
https://arxiv.org/abs/2401.04679


31

Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠

Low-rank

𝑊𝑄
𝑠 + 𝐿𝑅

Compensation
+

Type 
equation 

here.

+

𝐸𝑆

Type 
equation 

here.

+

𝐸𝑄

Type 
equation 

here.

+

𝐿𝑅

𝐸𝑆: Sparsity Error
𝐸𝑄: Quantization Error

𝐿, 𝑅: Low-rank Adapters
𝑊𝑆: Sparse Weight
𝑊𝑄

𝑆: Sparse and Quantized Weight

Quantized Elements

SLiM | Overview



SLiM uses an off-the-shelf method (Wanda1) for one-shot pruning.

32

SLiM | One-shot Pruning Method

Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠

Low-rank

𝑊𝑄
𝑠 + 𝐿𝑅

Compensation
+

Type 
equation 

here.

+

𝐸𝑆

+

𝐸𝑄

+

𝐿𝑅

Wanda

[1] Sun et al., A Simple and Effective Pruning Approach for Large Language Models

𝐸𝑆: Sparsity Error
𝐸𝑄: Quantization Error

𝐿, 𝑅: Low-rank Adapters
𝑊𝑆: Sparse Weight
𝑊𝑄

𝑆: Sparse and Quantized Weight

https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695


SLiM | Quantization

33

Pruning

𝑊 𝑊𝑠

Low-rank

𝑊𝑄
𝑠 + 𝐿𝑅

Compensation
+

+

𝐸𝑆

+

𝐿𝑅

Quantization

𝑊𝑄
𝑠+

𝐸𝑄

Quantized Elements

SLiM finds a tractable solution for minimizing the quantization error using novel a 
probabilistic approach.

𝐸𝑆: Sparsity Error
𝐸𝑄: Quantization Error

𝐿, 𝑅: Low-rank Adapters
𝑊𝑆: Sparse Weight
𝑊𝑄

𝑆: Sparse and Quantized Weight



Uniform quantization uses a single parameter per tensor to quantize the weight.

• The values larger than 𝛼∗ get clipped:  𝑊𝑄 = 𝑐𝑙𝑖𝑝(
𝑊

𝛼∗ , ±1) × 2𝑞−1 

• Tuning Parameter 𝛼∗  → Minimize the MSE of the quantization.

𝛼∗ = arg min
𝛼

𝑊 − 𝑊𝑄
2

34

Uniform Quantization
𝑞: Quantization Bitwidth

𝑄: Quantization Function
𝑓 𝑥 : Weight PDF

Value

F
re

q
u

e
n
c
y

𝑀𝛼∗

Non-convex np-hard problem!

Prior work1 approximately solves it through exhaustive search.

[1] Zhao et al., Atom: Low-bit Quantization for Efficient and Accurate LLM Serving

https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2310.19102
https://arxiv.org/abs/2310.19102


SLiM-Quant uses a probabilistic approach to formulate the objective function in uniform 
quantization

𝛼∗ = arg min
𝛼

𝑊 − 𝑊𝑄
2

35

Uniform Quantization | SLiM-Quant
𝑞: Quantization Bitwidth

𝑄: Quantization Function
𝑓 𝑥 : Weight PDF

ValueF
re

q
u

e
n
c
y
 o

f 
w

e
ig

h
t 

v
a

lu
e

s

𝑀𝛼∗

𝛼∗ = arg min න
0

𝛼

𝑄 𝑥 𝑓 𝑥 𝑑𝑥 +  න
𝛼

𝑀

𝑥 − 𝛼 2𝑓 𝑥 𝑑𝑥

𝑓 𝑥 : Weight probability density function 



Goal: Reduce the error added due to pruning and quantization.

36

Low-rank Adapters  

Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠

Low-rank

𝑊𝑄
𝑠 + 𝐿𝑅

Compensation
+

Type 
equation 

here.

+

𝐸𝑆

Type 
equation 

here.

+

𝐸𝑄

Type 
equation 

here.

+

𝐿𝑅

Quantized Elements

𝐸𝑆: Sparsity Error
𝐸𝑄: Quantization Error

𝐿, 𝑅: Low-rank Adapters
𝑊𝑆: Sparse Weight
𝑊𝑄

𝑆: Sparse and Quantized Weight



Low-rank Adapters | Naïve-LoRA 

37

Error Norm Minimization

𝐿∗, 𝑅∗ = arg min 𝑊 − 𝑊𝑄
𝑆 + 𝐿𝑅

𝐿∗, 𝑅∗ =  arg min 𝐸𝑆 + 𝐸𝑄 − 𝐿𝑅

𝐿∗, 𝑅∗ = 𝑆𝑉𝐷 𝐸𝑆 + 𝐸𝑄

Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠+ +

𝐸𝑆: Pruning Error
𝐸𝑄: Quantization Error

𝐹: Saliency Function

𝐸𝑆 𝐸𝑄

Error norm does not take the importance (saliency) of the weights into account.



38

Error Saliency Minimization
Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠

𝐸𝑆 𝐸𝑄

Low-rank Adapters | SLiM-LoRA
𝐸𝑆: Pruning Error
𝐸𝑄: Quantization Error

𝐹: Saliency Function
ҧ𝑥: Average Calibration Input

+ +

𝐿∗, 𝑅∗ = arg min 𝐹 𝑊 − 𝑊𝑄
𝑆 + 𝐿𝑅

𝐿∗, 𝑅∗ =  arg min 𝐹 𝐸𝑆 + 𝐸𝑄 − 𝐿𝑅

Saliency Function : 𝐹(𝑀) = 𝑑𝑖𝑎𝑔 ҧ𝑥 𝑀 

𝐿∗, 𝑅∗ = 𝑑𝑖𝑎𝑔
1

ҧ𝑥
𝑆𝑉𝐷 𝑑𝑖𝑎𝑔 ҧ𝑥 𝐸𝑆 + 𝐸𝑄

Minimizing the saliency of the reconstruction error!



39

Error Saliency Minimization
Pruning

𝑊 𝑊𝑠

Quantization

𝑊𝑄
𝑠

𝐸𝑆 𝐸𝑄

Low-rank Adapters | SLiM-LoRA
𝐸𝑆: Pruning Error
𝐸𝑄: Quantization Error

𝐹: Saliency Function
ҧ𝑥: Average Calibration Input

+ +

𝐿∗, 𝑅∗ = arg min 𝐹 𝑊 − 𝑊𝑄
𝑆 + 𝐿𝑅

𝐿∗, 𝑅∗ =  arg min 𝐹 𝐸𝑆 + 𝐸𝑄 − 𝐿𝑅

Saliency Function : 𝐹(𝑊) = 𝑑𝑖𝑎𝑔 ҧ𝑥 𝑊 

𝐿∗, 𝑅∗ = 𝑑𝑖𝑎𝑔
1

ҧ𝑥
𝑆𝑉𝐷 𝑑𝑖𝑎𝑔 ҧ𝑥 𝐸𝑆 + 𝐸𝑄

Minimizing the saliency of the reconstruction error!

The low-rank adapters in SLiM 

are further quantized to 4-bits!



40

SLiM | Zero-shot Accuracy Results

SLiM achieves up to 5.7% 

accuracy improvement over 

SOTA compression methods!

Average Accuracy over 6 Zero-shot tasks

Method OPT LLaMA 2

125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SOTA* 33.70 33.38 38.75 40.15 44.32 45.64 45.49 51.05

Naïve-LoRA 34.28 33.38 38.36 41.21 44.91 45.25 48.45 51.94

SLiM-LoRA 34.62 34.36 40.61 42.73 45.99 46.24 51.15 54.94

2:4 Sparsity with 4-bit Weight Quantization 

Method OPT LLaMA 2

125M 350M 1.3B 2.7B 6.7B 13B 7B 13B

SOTA* 35.11 35.16 41.02 43.43 46.97 47.38 53.62 57.00

Naïve-LoRA 34.77 34.23 40.40 43.37 46.64 47.30 51.52 55.33

SLiM-LoRA 35.20 35.32 41.85 43.63 47.16 47.96 54.26 57.85

Unstructured Sparsity with 4-bit Weight Quantization

*SOTA refers to the best accuracy among SparseGPT and Wanda 

for pruning and OPTQ, AWQ, AbsMax, OmniQuant, and AffineQuant 

for quantization.

https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2306.00978
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2403.12544


41

SLiM | Speedup and Memory Reduction

S
p
e
e

d
u
p

 (
×

)
S

p
e
e

d
u
p

 (
×

)
S

p
e
e

d
u
p

 (
×

)

SLiM achieves up to 4.3 ×  speedup on 

RTX3060 GPUs and up to 3.8 × speedup on 

A100 GPUs vs dense on LLaMA-2 models!

SLiM leads to consistent memory reduction on 

different models and GPUs!

LoRA Type:



42

SLiM | Larger Compressed vs. Smaller Dense

The accuracy results are from OPT family of models.

For a given parameter size budget, SLiM 

outperforms other methods, including 

dense models! 

Q: Quantized LoRA

FT: Fine-tuning

Model size-GB



Outline

43

Model Compression in Pretraining 

• SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of 

LLMs Lazy Low-rank Adapters [ICLR’25]

Model Compression at Inference

• SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for 

LLM Weight Compression [ICML’25]
Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

• STOICC: A Compiler for Tile-based Sparsity
STOICC

https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html
https://paramathic.github.io/stoicc-docs/


Inspector-Executor Tools for Sparsity 

Compilers must optimize sparse matrix operations to achieve performance.

44

Inspector

Reordering, 
compression and 

scheduling based on 
sparsity pattern

= zero entry

Data &
Metadata

Schedule

Sparse Matrix

Executor

Use data and 
schedule to perform 

SpMM operation

[PLDI’23] L. Wilkinson, K. Cheshmi, and M. M. Dehnavi, ‘Register Tiling for Unstructured Sparsity in Neural Network Inference’, Proc. ACM Program. Lang., 
vol. 7, no. PLDI, Jun. 2023.



for row, col in grid:

acc_tile = 0

for i in range(sparse_row[row], sparse_row[row + 1]):

acc_tile += dot(sparse_val[i], B[sparse_col[i]][col])

for i in range(dense_row[row], dense_row[row + 1]):

acc_tile += dot(dense_val[i], B[dense_col[i]][col])

D[row, col] = acc_tile

STOICC Executor: Built in Triton!

The executor performs the SpMM according to the schedule.  

45

Launch grid with one Triton program per tile of output matrix D.

Each program iterates over a row of A and column of B according to the schedule.

Inspector

0 1 2 1 2

0 1 3 5

sparse_val

1sparse_col 2 1 0

0sparse_row 2 3 4

dense_val

dense_col

dense_row

Dense
0

Dense
1

Dense
2

Dense
3

Dense
4

2:4
0

2:4
1

2:4
2

2:4
3

Tiles of A:

ExecutorSparse

Dense



46

Model Compression 

• SLoPe: Double-Pruned Sparse Plus Lazy Low-Rank Adapter Pretraining of LLMs 

Lazy Low-rank Adapters [ICLR’25]

• SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for 

LLM Weight Compression [ICML’25]

Compression Trinity Webpage

A Compiler for Rapid Prototyping of Sparsity and Quantization of Models on GPUs!

• STOICC: A Compiler for Tile-based Sparsity

STOICC

https://paramathic.github.io/stoicc-docs/
https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html

Summary

https://www.cs.toronto.edu/~mmozaffari/compression-trinity/index.html
https://paramathic.github.io/stoicc-docs/

	Slide 1
	Slide 2: Outline
	Slide 3: LLM Compute Graph | Weight Sparsity
	Slide 4: LLM Compute Graph | Weight Sparsity
	Slide 5: LLM Compute Graph | Time Breakdown
	Slide 6: Outline
	Slide 7: Weight Sparsity | Sparse Tensor Cores
	Slide 8
	Slide 9: Sparse Training | Forward Pass
	Slide 10: Sparse Training | Backward Pass
	Slide 11: Sparse Training | Backward Pass | Challenges
	Slide 12: Sparse Training | Backward Pass | Prior Solutions
	Slide 13: Sparse Training | Double Pruned Backward Pass 
	Slide 14: SLoPe | SpMM Setup Overhead
	Slide 15: SLoPe | Lazy Low-rank Adapters (LoRA)
	Slide 16: SLoPe | Lazy Low-rank Adapters (LoRA)
	Slide 17: SLoPe | Lazy Low-rank Adapters (LoRA)
	Slide 18: SLoPe | Lazy Low-rank Adapters | Convergence Rate 
	Slide 19
	Slide 20: SLoPe | Results | GPT2 Zero-shot Accuracy
	Slide 21: SLoPe | Results | Speedup and Memory Reduction
	Slide 23: Outline
	Slide 24: LLM Compute Graph | Sparse Inference
	Slide 25: Post-training Compression Methods
	Slide 26: Sparsity Challenges
	Slide 27: Quantization Challenges
	Slide 28: Higher Compression Ratios
	Slide 29: Higher Compression Ratios
	Slide 30
	Slide 31
	Slide 32
	Slide 33: SLiM | Quantization
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Low-rank Adapters | Naïve-LoRA 
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43: Outline
	Slide 44: Inspector-Executor Tools for Sparsity 
	Slide 45: STOICC Executor: Built in Triton!
	Slide 46

