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Automatic Parallelization, Performance Portability:
Solved Problems for AI Applications?

Ultra Pro Flash Nano

What about HPC Performance Portability?



Automatic Parallelization, Performance Portability:
Solved Problems for AI Applications?

Ultra Pro Flash Nano

Time to revisit the role of the compiler?



Before the “condenser”
we started making
waves in the cloud

Platforms

● NERSC Perlmutter
1536 GPU accelerated nodes with 
1 AMD Milan processor and 4 
NVIDIA A100 GPUs

● Google Cloud reservation
1,679 TPU v6e (Trillium)
1.5 ExaFLOPS (bf16)
53 TB of HBM
3.2 TB/s bisection bandwidth

Gordon Bell
prize nomination



Application: Oceananigans.jl
https://clima.github.io/OceananigansDocumentation

Simple simulation of baroclinic instability on an 
Earth-like planet: essential features of ocean and 
atmosphere interactions

Multiple integrals and solvers:

implicit vertical diffusion

hydrostatic pressure anomaly

vertical velocity

horizontal velocities

5th-order WENO-based advection schemes

tracers suitable for ultra-high-resolution

55-term polynomial approximation to the TEOS10 
equation of state for density as a function of 
oceanic temperature, salinity, and pressure

Gordon Bell
prize nomination

https://clima.github.io/OceananigansDocumentation


Weak Scaling Experiments: GPU /
Placement and Collectives



Weak Scaling Experiments: GPU /
Kernels and Host-Device Communication



Weak Scaling Experiments: TPU



Q1: What missing interoperability layers (software, standard, or 
abstraction) would most accelerate convergence between 
traditional HPC linear algebra workflows and today’s 
extreme-scale AI workloads?

Let’s take a look.



import jax.numpy as np
from jax import jit, grad, vmap

def predict(params, inputs):
  for W, b in params:
    outputs = np.dot(inputs, W) + b
    inputs = np.tanh(outputs)
  return outputs

def loss(params, batch):
  inputs, targets = batch
  preds = predict(params, inputs)
  return np.sum((preds - targets) ** 2)

gradient_fun = jit(grad(loss))
perexample_grads = jit(vmap(grad(loss), (None, 0)))

JAX is an extensible system for
composable function transformations
of Python+NumPy code, with 
computations staged to XLA

How did we get there



StableHLO
https://openxla.org/stablehlo

https://openxla.org/stablehlo


XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs) 
expose the right abstractions to make 
automatic code generation possible and 
effective

→ Also domain-specific accelerators

HLO: XLA Compute Graph, Static Dataflow



XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs) 
expose the right abstractions to make 
automatic code generation possible and 
effective

→ Also domain-specific accelerators

● JIT / AOT compiler for linear algebra
● Multiple backends: CPUs, GPUs, TPUs
● Eliminate dispatch overhead
● Fuse operations:

avoid round trips to memory
● Specialization, global buffer analysis, 

vectorization, unrolling, etc.



Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs) 
expose the right abstractions to make 
automatic code generation possible and 
effective

→ Raising the level of abstraction is 
harder than riding the abstraction 
lowering slope

What about HPC?



What’s wrong?



What’s wrong?

Lifting, isn’t this just as hard as automatic parallelization?
What about the abstraction penalty? Performance predictability? Control for performance engineers?



https://doi.org/10.1145/3317550.3321441

HPC Systems are (also) Stuck in a Rut!

https://commons.wikimedia.org/wiki/File:Stuck_in_a_Rut.jpg

https://doi.org/10.1145/3317550.3321441
https://commons.wikimedia.org/wiki/File:Stuck_in_a_Rut.jpg


Flurry of GPU acceleration options
CUDA Kernels / OpenCL-C
SYCL
CUTLASS
Triton (PyTorch, JAX)
Pallas (JAX)
Turbine (AMD)
Mojo (Modular)
CuTile (Nvidia)

and more coming and going…

Kernel Programming to the Rescue

More broadly
“If high level fails, try lower level”
Folklore: high-level language

   ⇓
        abstraction penalty

Motivations: escape hatch for…
● Performance tricks
● Extra expressiveness

e.g. ragged or sparse tensors
● Quick experiments



Why? Hardware Optionality
● Compiler = HW-enabling differentiator

→ best-effort

● Kernel languages = siloed HW / SW stacks
→ all or nothing

Unify Kernel Programming with Compiler Automation!



Domain-specific generators

Multi-stage programming
(macro-expansion, quasi-quotation)

Late binding of kernel implementations
Optional cross-stage persistence

Staging and Partial Evaluation

[SCP 2006]



Halide (Ragan-Kelley et.al. 2013)

TC (Vasilache et.al. 2018)

Fireiron (Hagedorn et.al. 2020)

TVM (Chen et.al. 2018)

TTile (Tollenaere et.al. 2021)

Also rewrite systems with semantic 
guarantees: Lift, Elevate, Rise

User-Schedulable Languages



URUK (Girbal et.al. 2006) Omega (Kelly & Pugh, 1991)

Common ancestor: the Alpha language for high-level synthesis
1992-... Le Verge, Quinton, Rajopadhye, Risset, Wilde…

User-Schedulable Languages… Actually Time-Tested



Schedules as Pragmas

[LCPC 2005]



[CGO 2013]

[DAC 2010]

[CGO 2011]

The Compiler Has More Interfaces Than You Think



ML + Compiler Construction

https://dl.acm.org/doi/abs/10.1145/3578360.3580273


Infrastructure for Compiler Construction



● Algorithm/Model level
Python schedules, Lücke et al.

○ Expose codegen building blocks
to performance engineers

○ Reuse schedules across
models/layers and targets

● IR-level
MLIR transform dialect to construct
“custom codegen flows”, tutorial, recording

Controllable Compiler Optimizations

[CGO 2025]

https://mlir.llvm.org/docs/Dialects/Transform/
https://docs.google.com/presentation/d/1UQ0oYRgi39lKF4fzb2Wm-z7guCmyF7hnRBScRbEz1B0/edit?usp=sharing&resourcekey=0-3VDNsP5FyX7B8nt68A8H-g
https://www.youtube.com/watch?v=P4gUj3QtH_Y


Example: Python (JAX) Schedules

Generates transform IR

.py
def schedule(module: OpHandle) -> None:

  matmul   = module.match_ops(linalg.BatchMatmulOp )

  fill     = module.match_ops(linalg.FillOp)

  for_all  = matmul. tile_to_forall (tile_sizes =[64, 64, 1])

  fill.fuse_into(for_all)

  for_all2 = matmul. tile_to_forall (tile_sizes =[4, 32, 1])

  # ...

.mlir
func.func public @batch_matmul(%arg0: tensor<128x80x32xf32>, 

 %arg1: tensor<128x32x320xf32>) ->   
       (tensor<128x80x320xf32>) {

    %0   = tensor.empty() : tensor<128x80x320xf32>
    %cst = arith.constant 0.0 : f32
    scf.forall (64, 64, 1) {
      %1 = linalg.fill
      scf.forall (4, 32, 1) {
        %2 = linalg.batch_matmul    
        // [...]
}

 --apply_transform_script
.mlirtransform.sequence (%module: !transform.op<module>) {

  %matmul = transform.match_op name “linalg.batch_matmul” in %module
  // [...]
  %forall, %tiled =  transform.tile_to_forall_op %matmul tile_sizes [64, 64, 1]
  // [...]
  %fused, %containing =  transform.fuse_into_containing_op %forall 
  // [...]
  %forall0, %tiled0 = transform.tile_to_forall_op %tiled tile_sizes [4, 32, 1]
  // [...]

.mlirfunc.func public @batch_matmul(%arg0: tensor<128x80x32xf32>, 
        %arg1: tensor<128x32x320xf32>)->   
       (tensor<128x80x320xf32>) {

    // prepare output
    %0   = tensor.empty() : tensor<128x80x320xf32>
    %cst = arith.constant 0.0 : f32
    %1   = linalg.fill ins(%cst) outs(%0)
    %2   = linalg.batch_matmul ins(%arg0, %arg1) outs(%1)   
    return %2 : tensor<128x80x320xf32>
}

Inject

28



The Schedule is the Compiler

def schedule(module: OpHandle) -> None:

  # [...]

  # lower to llvm is actually:

  module.convert_linalg_to_loops_pass()

  module.convert_scf_to_cf_pass()

  module.lower_affine_pass()

  module.convert_vector_to_llvm_pass()

  module.convert_math_to_llvm_pass()

  module.finalize_memref_to_llvm_conversion_pass()

  module.func_to_llvm_pass()

  module.reconcile_unrealized_casts_pass()

Every pass can be initiated through this interface
    module.run_pass(”MyPassName”)

    with handle.apply_patterns():

      structured.ApplyTilingCanonicalizationPatternsOp()

      loop.      ApplyForLoopCanonicalizationPatternsOp()

      transform. ApplyCanonicalizationPatternsOp()

1. Schedule completely drives the compiler 2. Constructing new Passes on-the-fly

- Not possible with any ML compiler until now
- Combination of patterns does not have to be 

known statically

29



Enzyme Framework
Billy Moses (UIUC / Google)

https://enzyme.mit.edu
And now Also on MLIR, JAX, Julia! https://github.com/EnzymeAD/Enzyme-JAX

https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX


Enzyme Autodiff: Everything, Everywhere, All at Once



Computational Science → LLVM → MLIR → Heterogeneous Platform 



Look mom, no MPI!
Ad-hoc runtimes and high-level composable abstractions

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads


Distribution and Mapping HLO Is More Expressive Than You Think



Q2: Looking ahead to 2030, do you expect the principal 
bottleneck for extreme-scale AI to be data, algorithms, resilience 
or energy, and how does that prediction shape your research 
priorities today?

The principal bottleneck is “smaller is better”

Generate a comic storyboard based on the "smaller is better" meme, with a white background.



Q3: Given the different developments in “computer architecture 
for AI” and “computational science”, do you think we'll see a 
convergence or divergence of roadmaps?

Convergence:

Divergence:  commodity AI vs. supercomputing AI


