
Condenser: noun,
an Apparatus for
Compiling
Science
to the Cloud

Albert Cohen
DP2E-IA Workshop
June 17 2025

Automatic Parallelization, Performance Portability:
Solved Problems for AI Applications?

Ultra Pro Flash Nano

What about HPC Performance Portability?

Automatic Parallelization, Performance Portability:
Solved Problems for AI Applications?

Ultra Pro Flash Nano

Time to revisit the role of the compiler?

Before the “condenser”
we started making
waves in the cloud

Platforms

● NERSC Perlmutter
1536 GPU accelerated nodes with
1 AMD Milan processor and 4
NVIDIA A100 GPUs

● Google Cloud reservation
1,679 TPU v6e (Trillium)
1.5 ExaFLOPS (bf16)
53 TB of HBM
3.2 TB/s bisection bandwidth

Gordon Bell
prize nomination

Application: Oceananigans.jl
https://clima.github.io/OceananigansDocumentation

Simple simulation of baroclinic instability on an
Earth-like planet: essential features of ocean and
atmosphere interactions

Multiple integrals and solvers:

implicit vertical diffusion

hydrostatic pressure anomaly

vertical velocity

horizontal velocities

5th-order WENO-based advection schemes

tracers suitable for ultra-high-resolution

55-term polynomial approximation to the TEOS10
equation of state for density as a function of
oceanic temperature, salinity, and pressure

Gordon Bell
prize nomination

https://clima.github.io/OceananigansDocumentation

Weak Scaling Experiments: GPU /
Placement and Collectives

Weak Scaling Experiments: GPU /
Kernels and Host-Device Communication

Weak Scaling Experiments: TPU

Q1: What missing interoperability layers (software, standard, or
abstraction) would most accelerate convergence between
traditional HPC linear algebra workflows and today’s
extreme-scale AI workloads?

Let’s take a look.

import jax.numpy as np
from jax import jit, grad, vmap

def predict(params, inputs):
 for W, b in params:
 outputs = np.dot(inputs, W) + b
 inputs = np.tanh(outputs)
 return outputs

def loss(params, batch):
 inputs, targets = batch
 preds = predict(params, inputs)
 return np.sum((preds - targets) ** 2)

gradient_fun = jit(grad(loss))
perexample_grads = jit(vmap(grad(loss), (None, 0)))

JAX is an extensible system for
composable function transformations
of Python+NumPy code, with
computations staged to XLA

How did we get there

StableHLO
https://openxla.org/stablehlo

https://openxla.org/stablehlo

XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

→ Also domain-specific accelerators

HLO: XLA Compute Graph, Static Dataflow

XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

→ Also domain-specific accelerators

● JIT / AOT compiler for linear algebra
● Multiple backends: CPUs, GPUs, TPUs
● Eliminate dispatch overhead
● Fuse operations:

avoid round trips to memory
● Specialization, global buffer analysis,

vectorization, unrolling, etc.

Folklore: Go Domain-Specific!

→Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

→ Raising the level of abstraction is
harder than riding the abstraction
lowering slope

What about HPC?

What’s wrong?

What’s wrong?

Lifting, isn’t this just as hard as automatic parallelization?
What about the abstraction penalty? Performance predictability? Control for performance engineers?

https://doi.org/10.1145/3317550.3321441

HPC Systems are (also) Stuck in a Rut!

https://commons.wikimedia.org/wiki/File:Stuck_in_a_Rut.jpg

https://doi.org/10.1145/3317550.3321441
https://commons.wikimedia.org/wiki/File:Stuck_in_a_Rut.jpg

Flurry of GPU acceleration options
CUDA Kernels / OpenCL-C
SYCL
CUTLASS
Triton (PyTorch, JAX)
Pallas (JAX)
Turbine (AMD)
Mojo (Modular)
CuTile (Nvidia)

and more coming and going…

Kernel Programming to the Rescue

More broadly
“If high level fails, try lower level”
Folklore: high-level language

 ⇓
 abstraction penalty

Motivations: escape hatch for…
● Performance tricks
● Extra expressiveness

e.g. ragged or sparse tensors
● Quick experiments

Why? Hardware Optionality
● Compiler = HW-enabling differentiator

→ best-effort

● Kernel languages = siloed HW / SW stacks
→ all or nothing

Unify Kernel Programming with Compiler Automation!

Domain-specific generators

Multi-stage programming
(macro-expansion, quasi-quotation)

Late binding of kernel implementations
Optional cross-stage persistence

Staging and Partial Evaluation

[SCP 2006]

Halide (Ragan-Kelley et.al. 2013)

TC (Vasilache et.al. 2018)

Fireiron (Hagedorn et.al. 2020)

TVM (Chen et.al. 2018)

TTile (Tollenaere et.al. 2021)

Also rewrite systems with semantic
guarantees: Lift, Elevate, Rise

User-Schedulable Languages

URUK (Girbal et.al. 2006) Omega (Kelly & Pugh, 1991)

Common ancestor: the Alpha language for high-level synthesis
1992-... Le Verge, Quinton, Rajopadhye, Risset, Wilde…

User-Schedulable Languages… Actually Time-Tested

Schedules as Pragmas

[LCPC 2005]

[CGO 2013]

[DAC 2010]

[CGO 2011]

The Compiler Has More Interfaces Than You Think

ML + Compiler Construction

https://dl.acm.org/doi/abs/10.1145/3578360.3580273

Infrastructure for Compiler Construction

● Algorithm/Model level
Python schedules, Lücke et al.

○ Expose codegen building blocks
to performance engineers

○ Reuse schedules across
models/layers and targets

● IR-level
MLIR transform dialect to construct
“custom codegen flows”, tutorial, recording

Controllable Compiler Optimizations

[CGO 2025]

https://mlir.llvm.org/docs/Dialects/Transform/
https://docs.google.com/presentation/d/1UQ0oYRgi39lKF4fzb2Wm-z7guCmyF7hnRBScRbEz1B0/edit?usp=sharing&resourcekey=0-3VDNsP5FyX7B8nt68A8H-g
https://www.youtube.com/watch?v=P4gUj3QtH_Y

Example: Python (JAX) Schedules

Generates transform IR

.py
def schedule(module: OpHandle) -> None:

 matmul = module.match_ops(linalg.BatchMatmulOp)

 fill = module.match_ops(linalg.FillOp)

 for_all = matmul. tile_to_forall (tile_sizes =[64, 64, 1])

 fill.fuse_into(for_all)

 for_all2 = matmul. tile_to_forall (tile_sizes =[4, 32, 1])

 # ...

.mlir
func.func public @batch_matmul(%arg0: tensor<128x80x32xf32>,

 %arg1: tensor<128x32x320xf32>) ->
 (tensor<128x80x320xf32>) {

 %0 = tensor.empty() : tensor<128x80x320xf32>
 %cst = arith.constant 0.0 : f32
 scf.forall (64, 64, 1) {
 %1 = linalg.fill
 scf.forall (4, 32, 1) {
 %2 = linalg.batch_matmul
 // [...]
}

 --apply_transform_script
.mlirtransform.sequence (%module: !transform.op<module>) {

 %matmul = transform.match_op name “linalg.batch_matmul” in %module
 // [...]
 %forall, %tiled = transform.tile_to_forall_op %matmul tile_sizes [64, 64, 1]
 // [...]
 %fused, %containing = transform.fuse_into_containing_op %forall
 // [...]
 %forall0, %tiled0 = transform.tile_to_forall_op %tiled tile_sizes [4, 32, 1]
 // [...]

.mlirfunc.func public @batch_matmul(%arg0: tensor<128x80x32xf32>,
 %arg1: tensor<128x32x320xf32>)->
 (tensor<128x80x320xf32>) {

 // prepare output
 %0 = tensor.empty() : tensor<128x80x320xf32>
 %cst = arith.constant 0.0 : f32
 %1 = linalg.fill ins(%cst) outs(%0)
 %2 = linalg.batch_matmul ins(%arg0, %arg1) outs(%1)
 return %2 : tensor<128x80x320xf32>
}

Inject

28

The Schedule is the Compiler

def schedule(module: OpHandle) -> None:

 # [...]

 # lower to llvm is actually:

 module.convert_linalg_to_loops_pass()

 module.convert_scf_to_cf_pass()

 module.lower_affine_pass()

 module.convert_vector_to_llvm_pass()

 module.convert_math_to_llvm_pass()

 module.finalize_memref_to_llvm_conversion_pass()

 module.func_to_llvm_pass()

 module.reconcile_unrealized_casts_pass()

Every pass can be initiated through this interface
 module.run_pass(”MyPassName”)

 with handle.apply_patterns():

 structured.ApplyTilingCanonicalizationPatternsOp()

 loop. ApplyForLoopCanonicalizationPatternsOp()

 transform. ApplyCanonicalizationPatternsOp()

1. Schedule completely drives the compiler 2. Constructing new Passes on-the-fly

- Not possible with any ML compiler until now
- Combination of patterns does not have to be

known statically

29

Enzyme Framework
Billy Moses (UIUC / Google)

https://enzyme.mit.edu
And now Also on MLIR, JAX, Julia! https://github.com/EnzymeAD/Enzyme-JAX

https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX

Enzyme Autodiff: Everything, Everywhere, All at Once

Computational Science → LLVM → MLIR → Heterogeneous Platform

Look mom, no MPI!
Ad-hoc runtimes and high-level composable abstractions

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

Distribution and Mapping HLO Is More Expressive Than You Think

Q2: Looking ahead to 2030, do you expect the principal
bottleneck for extreme-scale AI to be data, algorithms, resilience
or energy, and how does that prediction shape your research
priorities today?

The principal bottleneck is “smaller is better”

Generate a comic storyboard based on the "smaller is better" meme, with a white background.

Q3: Given the different developments in “computer architecture
for AI” and “computational science”, do you think we'll see a
convergence or divergence of roadmaps?

Convergence:

Divergence: commodity AI vs. supercomputing AI

