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Before the “condenser
we started making
waves in the cloud

Platforms

e NERSC Perlmutter
1536 GPU accelerated nodes with
1 AMD Milan processor and 4
NVIDIA A100 GPUs

e Google Cloud reservation
1,679 TPU v6e (Trillium)
1.5 ExaFLOPS (bf16)
53 TB of HBM
3.2 TB/s bisection bandwidth

n
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Abstract

Ocean and climate models are today limited by compute resources,
forcing approximations driven by feasibility rather than theory.
They consequently miss important physical processes and decision-
relevant regional details. Advances in Al-driven supercomputing —
specialized tensor accelerators, Al compiler stacks, and novel dis-
tributed systems — offer unprecedented computational power. Yet,
scientific applications such as ocean models, often written in For-
tran, C++, or Julia and built for traditional HPC, remain largely in-
compatible with these technologies. This gap hampers performance
portability and isolates scientific computing from rapid cloud-based
innovation for Al workloads. In this work, we bridge that gap by
transpiling a Julia-based ocean model (Oceananigans) using the
MLIR compiler infrastructure. This process enables advanced op-
timizations, deployment on Al hardware (e.g., Google TPUs) and
automatic dlfferentlatlon Our results demonstrate
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3 Performance Attributes

Performance Attribute This Submission

Category achievement scalability

Type of method used semi-implicit

Results reported on the basis of ~ whole application except I/O
Precision reported double precision (GPU)

emulated double precision (TPU)
results measured on full-scale system
timers, FLOP count

System scale
Measurement mechanism

4 Overview of the Problem

Climate is governed by planetary fluid dynamics. This submission
focuses on the core of global climate models: simulations of the
id dynamics of the ocean and atmosphere that dictate the large-

~structure and long-term evolution of Earth’s climate. Fluid
al processes underpin phenomena like equator-to-pole
port, ENSO, the jet stream, air-sea interaction, and the
line circulation, all of which drive variability and set
¢’s memory and predictability [13, 19, 36]. Accurately
limate requires ocean and atmospheric dynamical cores
governing equations of fluid motion as efficiently and
fas possible.

eed for high resolution. Influential climate processes cover a
ide range of interacting spatial scales [18], from planetary (10, 000
m), synoptic (1, 000 km), tropical cyclones and ocean geostrophic
eddies (10 — 200 km), atmospheric mesoscale convective systems
and ocean submesoscale processes (1 — 10 km), internal gravity
waves, clouds, turbulent diffusion, convective mixing on scales (10
m), and down to the dissipation of kinetic energy (1 mm). Because
current global ocean and atmosphere models cannot fully resolve
all these small-scale processes, many processes are represented us-
ing simplified approximations called parameterizations. However,



Application: Oceananigans.jl
https://clima.github.io/OceananigansDocumentation

Simple simulation of baroclinic instability on an
Earth-like planet: essential features of ocean and
atmosphere interactions
Multiple integrals and solvers:

implicit vertical diffusion

hydrostatic pressure anomaly

vertical velocity

horizontal velocities

5th-order WENO-based advection schemes

tracers suitable for ultra-high-resolution

55-term polynomial approximation to the TEOS10
equation of state for density as a function of
oceanic temperature, salinity, and pressure

Making Waves in the Cloud: A Paradigm Shift for Scientific
Computing and Ocean Modeling through Compiler Technology

William S. Moses’¥, Mosé Giordano*, Avik Pal?, Gregory Wagnerﬁ, Ivan R Ivanov, Paul Berg”,
Johannes Blaschke, Jules Merckx”, Arpit Jaiswal®, Patrick Heimbach*, Son Vu, Sergio
Sanchez-Ramirez, Simone Silvestri, Nora Loose*, Ivan Ho, Vimarsh Sathia’, Jan Hueckelheim®*,
Johannes De Fine Licht, Kevin Gleason®, Ludovic Rass, Gabriel Baraldi, Dhruv Apte®, Lorenzo
Chelini*, Jacques Pienaar®, Gaetan Lounes, Valentin Churavy, Sri Hari Krishna Narayanan®, Navid
Constantinou, William R. Magro§, Michel Schanen*, Alexis Montoison®, Alan Edelman?, Samarth
Narang, Tobias Grosser, Keno Fischer?, Robert Hundt®, Albert Cohen®, Oleksandr Zinenko® *

UIUC ¥, Google §, UCL *, MIT #, NVIDIA ¢, UT Austin

“, [C]Worthy *, BSC ¢, Argonne National Laboratory *,

LBNL °, Cambridge ", JuliaHub ?, University of Mainz ¥, BFH ”, Ghent University *

Abstract

Ocean and climate models are today limited by compute resources,
forcing approximations driven by feasibility rather than theory.
They consequently miss important physical processes and decision-
relevant regional details. Advances in Al-driven supercomputing —
specialized tensor accelerators, Al compiler stacks, and novel dis-
tributed systems — offer unprecedented computational power. Yet,
scientific applications such as ocean models, often written in For-
tran, C++, or Julia and built for traditional HPC, remain largely in-
compatible with these technologies. This gap hampers performance
portability and isolates scientific computing from rapid cloud-based
innovation for Al workloads. In this work, we bridge that gap by
transpiling a Julia-based ocean model (Oceananigans) using the
MLIR compiler infrastructure. This process enables advanced op-
timizations, deployment on Al hardware (e.g., Google TPUs), and
automatic dlfferentlatlon Our results demonstrate

Gordon Bell
prize nomination

Author’s Contact Information: Wil Joses™®, Mosé Giordano*, Avik Pal’,
Gregory Wagner?, Ivan R Ivanov, £ Johannes Blaschke, Jules Merd
Arpit Jaiswal®, Patrick Heimbach u, Sergio Sanchez-Ramirez, Simone Sil-
vestri, Nora Loose*, Ivan Ho, Vimarsh Sathia’, Jan Hueckelheim®, Johannes De Fine
Licht, Kevin Gleason®, Ludovic Rass, Gabriel Baraldi, Dhruv Apte®, Lorenzo Chelini®,

3 Performance Attributes

Performance Attribute This Submission

Category achievement scalability

Type of method used semi-implicit

Results reported on the basis of ~ whole application except I/O
Precision reported double precision (GPU)

emulated double precision (TPU)
results measured on full-scale system
timers, FLOP count

System scale
Measurement mechanism

4 Overview of the Problem

Climate is governed by planetary fluid dynamics. This submission
focuses on the core of global climate models: simulations of the
id dynamics of the ocean and atmosphere that dictate the large-

~structure and long-term evolution of Earth’s climate. Fluid
al processes underpin phenomena like equator-to-pole
port, ENSO, the jet stream, air-sea interaction, and the
line circulation, all of which drive variability and set
¢’s memory and predictability [13, 19, 36]. Accurately
limate requires ocean and atmospheric dynamical cores
governing equations of fluid motion as efficiently and
as possible.

\ eed for high resolution. Influential climate processes cover a

ide range of interacting spatial scales [18], from planetary (10, 000
m), synoptic (1,000 km), tropical cyclones and ocean geostrophic
eddies (10 — 200 km), atmospheric mesoscale convective systems
and ocean submesoscale processes (1 — 10 km), internal gravity
waves, clouds, turbulent diffusion, convective mixing on scales (10
m), and down to the dissipation of kinetic energy (1 mm). Because
current global ocean and atmosphere models cannot fully resolve
all these small-scale processes, many processes are represented us-
ing simplified approximations called parameterizations. However,


https://clima.github.io/OceananigansDocumentation

Latitude

Weak Scaling Experiments: GPU /

Placement and Collectives

0 60

120

180

Longitude

240

300

360

surface temperature (°C)

Wallclock time [ms]

10

T superlinear

1 sublinear
. o A

— @— kernel runtime
—@— optimized kernel runtime
7'7 nccl communication

- ideal weak scaling

- optimized nccl communication

10°
Number of GPUs

10




Wallclock time [ms]

10

10

10°

Weak Scaling Experiments: GPU /
Kernels and Host-Device Communication
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Figure 7: GPU utilization during 10 iterations of the benchmark problem on one Perlmutter GPU node (4 Nvidia A100s). Data
collected with Nsight Systems. top: Percentage of SMs active, middle: Percentage saturation of active SMs, bottom: SM Warp
Occupancy (yellow shows the active warps, gray shows inactive warps). During these 10 iterations on average 50.6% of compute
warps were utilized, while an average of 26.6% compute warps were unallocated on active SMs.




Weak Scaling Experiments: TPU
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Q1: What missing interoperability layers (software, standard, or
abstraction) would most accelerate convergence between
traditional HPC linear algebra workflows and today’s
extreme-scale Al workloads?

Let’s take a look.



How did we get there

import jax.numpy as np
from jax import jit, grad, vmap

def predict(params, inputs):
for W, b in params:
outputs = np.dot(inputs, W) + b
inputs = np.tanh(outputs)
return outputs

def loss(params, batch):
inputs, targets = batch
preds = predict(params, inputs)
return np.sum((preds - targets) ** 2)

JAX is an extensible system for
gradient_fun = jit(grad(loss)) composable function transformations
perexample grads = jit(vmap(grad(loss), (None, 0))) of Python+NumPy code, with

computations staged to XLA




StableHLO

https://openxla.org/stablehlo
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XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

—Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

— Also domain-specific accelerators

HLO: XLA Compute Graph, Static Dataflow
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XLA / HLO / StableHLO

Folklore: Go Domain-Specific!

—Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

— Also domain-specific accelerators

JIT / AOT compiler for linear algebra
Multiple backends: CPUs, GPUs, TPUs
Eliminate dispatch overhead

Fuse operations:

avoid round trips to memory
Specialization, global buffer analysis,
vectorization, unrolling, etc.



What about HPC?

Folklore: Go Domain-Specific!

—Domain-Specific Languages (DSLs)
expose the right abstractions to make
automatic code generation possible and
effective

— Raising the level of abstraction is
harder than riding the abstraction
lowering slope

Progressive Raising in Multi- level IR

Lorenzo Chelini Andi Drebes
TU Eindhoven
Eindhoven, The Netherlands

l.chelini @tue.nl

Paris, France

Nicolas Vasilache
Google
Zurich, Switzerland
ntv@google.com

Abstract—Multi-level intermediate representations (IR) show
great promise for lowering the design costs for domain- speclﬁc
compilers by providing a r ble, ex ible, and
onated framework for expressing domain-specific and high-| level
abstractions dlrectly in the IR. But, while such frameworks
support the progressive lowermg of high-level representations to
low-level IR, they do not raise in the opposite direction. Thus, the
entry point into the pilation pipeline defi the highest level
of abstraction for all subseq transfor li g the
set of applicable optimizations, in particular for general purpose
languages that are not semantically rich enough to model the
required abstractions.

‘We propose Progressive Raising, a complementary approach to
the progressive lowering in multi-level IRs that raises from lower
to higher-level abstractions to leverage domain-specific transfor-
mations for low-level representations. We further introduce Multi-
level Tactics, our declarative approach for progressive raising,
implemented on top of the MLIR framework, and demonstrate
the progressive raising from affine loop nests specified in a

Inria and Ecole Normale Supérieure
andi@programmierforen.de

Tobias Grosser
University of Edinburgh

Edinburgh, UK
tobias.grosser@ed.ac.uk

Oleksandr Zinenko
Google Google
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Albert Cohen

Henk Corporaal
TU Eindhoven
Eindhoven, The Netherlands
h.corporaal @tue.nl

High-level of abstraction

Multi-Level
Tactics

uooRSqe J0 [0re]
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{1l Il

Fig. 1. Multi-level Tactics lifts general-purpose languages to higher-abstraction
levels to enable effective domain-specific compilation via progressive lowering.




?

'S wrong

What




What's wrong?

—

Lifting, isn’t this just as hard as automatic parallelization?
What about the abstraction penalty? Performance predictability? Control for performance engineers?
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ystems are (also) Stuck in a Rut!
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Machine Learning Systems are Stuck in a Rut

Paul Barham
Google Brain

Abstract

In this paper we argue that systems for numerical com-
puting are stuck in a local basin of performance and
p y. Systems hers are doing an excel-
lent job improving the performance of 5-year-old bench-
marks, but gradually making it harder to explore innova-
tive machine learning research ideas.

We explain how the evolution of hardware acceler-
ators favors compiler back ends that hyper-optimize
large monolithic kernels, show how this reliance on high-
performance but inflexible kernels reinforces the domi-
nant style of programming model, and argue these pro-
gramming abstractions lack expressiveness, maintain-
ability, and modularity; all of which hinders research
progress.

We conclude by noting promising directions in the
field, and advocate steps to advance progress towards
high-performance general purpose numerical computing
systems on modern accelerators.

ACM Reference Format:

Paul Barham and Michael Isard. 2019. Machine Learning Sys-
tems are Stuck in a Rut. In Workshop on Hot Topics in Operating
Systems (HotOS '19), May 13~15, 2019, Bertinoro, Italy. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3317550.
3321441

1 Compiling for modern accelerators
We became interested in this paper’s subject when trying
to improve an implementation of Capsule networks [1] to
scale up to larger datasets. Capsule networks are an excit-
ing machine learning research idea where scalar-valued
“neurons” are replaced by small matrices, allowing them
to capture more complex relationships. Capsules may or
may not be the “next big thing” in machine learning, but
they serve as a representative example of a disruptive
ML research idea.

Although our convolutional Capsule model requires
around 4 times fewer floating point operations (FLOPS)

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s)

HotOS 19, May 13-15, 2019, Bertinoro, Italy

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6727-1/19/05.
https:/doi.org/10.1145/3317550.3321441
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Figure 1. Conv2D operation with 3x3 kernel, stride=2

with 16 times fewer training parameters than the convo-
lutional neural network (CNN) we were comparing it to,
implementations in both TensorFlow({2] and PyTorch[3]
were much slower and ran out of memory with much
smaller models. We wanted to understand why.

1.1 New ideas often require new primitives

We won’t discuss the full details of Capsule networks
in this paper!, but for our purposes it is sufficient to
consider a simplified form of the inner loop, which is
similar to the computation in a traditional CNN layer but
operating on 4x4 matrices rather than scalars.

A basic building block of current machine learning
frameworks is the strided 2D convolution. Most frame-
works provide a primitive operation that accepts N input
images of size HXW, where each pixel has a “depth” of C;
channels?. Informally, for a “kernel size” K=3 and “stride”
S$=2, conv2d computes a weighted sum of overlapping
3x3 patches of pixels centered at every other (x,y) co-
ordinate, to produce N smaller images with pixel depth
C, (Figure 1). Mathematically, this can be expressed as
follows:

L O™Co_ e cico
Vn,x,y,c, : Ox.y = Z Z Z Is.\*:kx.xyfk; Kki,k., (Y]
ks ky o
where - denotes scalar multiplication, and O, I, and K
are all 4-dimensional arrays of scalars. The resulting

code is little more than 7 nested loops around a multiply-
accumulate operation, but array layout, vectorization,

!For an excellent tutorial on Capsule networks see [4]
2 Section 4 discusses why these dimensions are used.

https://doi.org/10.1145/3317550.3321441
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Kernel Programming to the Rescue

Flurry of GPU acceleration options More broadly

CUDA Kernels / OpenCL-C “If high level fails, try lower level”
SYCL Folklore: high-level language
CUTLASS U

Triton (PyTorch, JAX) )

Pallas (JAX) abstraction penalty
Turbine (AMD)

Mojo (Modular) Motivations: escape hatch for...
CuTile (Nvidia) e Performance tricks

e Extra expressiveness
e.g. ragged or sparse tensors
e Quick experiments

and more coming and going...



Unify Kernel Programming with Compiler Automation!

Why? Hardware Optionality

e Compiler = HW-enabling differentiator
— best-effort

e Kernel languages = siloed HW / SW stacks

— all or nothing Journal of Parallel and Distributed Computing

Volume 61, Issue 12, December 2001, Pages 1803-1826

ELSEVIER

Regular Article

Telescoping Languages: A Strategy for
Automatic Generation of Scientific Problem-
Solving Systems from Annotated Libraries

Ken Kennedy ¢, Bradley Broom 9, Keith Cooper ¢, Jack Dongarra ®, Rob Fowler ©, Dennis Gannon €,

Lennart Johnsson 9, John Mellor-Crummey ¢, Linda Torczon ©




Staging and Partial Evaluation

Domain-specific generators
Multi-stage programming
(macro-expansion, quasi-quotation)

Late binding of kernel implementations
Optional cross-stage persistence

In search of a program generator to implement generic
transformations for high-performance computing

Albert Cohen®*, Sébastien Donadio®, Maria-Jesus Garzaran®, Christoph Herrmann9,

Oleg Kiselyov®, David Padua®

[S C P 2 O O 6] A ALCHEMY group, INRIA Futurs, Orsay, France

b pRisM, University of Versailles, France
€ DCS, University of Illinois at Urbana-Champaign, IL, USA
d FMI, University of Passau, Germany
€ FNMOC, Monterey, CA, USA
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Abstract

The quality of compiler-optimized code for high-performance applications is far behind what optimization and domain experts
can achieve by hand. Although it may seem surprising at first glance, the performance gap has been widening over time, due to
the tremendous complexity increase in microprocessor and memory architectures, and to the rising level of abstraction of popular
programming languages and styles. This paper explores in-between solutions, neither fully automatic nor fully manual ways to
adapt a computationally intensive application to the target architecture. By mimicking complex sequences of transformations useful
to optimize real codes, we show that generative programming is a practical means to implement architecture-aware optimizations
for high-performance applications.

This work explores the promises of generative programming languages and techniques for the high-performance computing
expert. We show that complex, architecture-specific optimizations can be implemented in a type-safe, purely generative framework.
Peak performance is achievable through the careful combination of a high-level, multi-stage evaluation language — MetaOCaml —
with low-level code generation techniques. Nevertheless, our results also show that generative approaches for high-performance
computing do not come without technical caveats and implementation barriers concerning productivity and reuse. We describe these
difficulties and identify ways to hide or overcome them, from abstract syntaxes to heterogeneous generators of code generators,
combining high-level and type-safe multi-stage programming with a back-end generator of imperative code.

(© 2006 Elsevier B.V. All rights reserved.




User-Schedulable Languages

+ Loop Tiling
tc::IslKernelOptions: :makeDefaultM

Input: Algorithm yo, xo, ko, yi, xi, ki = s[C].tile(y, x, k, 8, 8, 8) SerneIfilona: snakeBete
: .scheduleSpecialize se
blurx(x,y) = in(x-1,y) for yo in range(128): .tile({4 22})
+ in(x y) for xo in range(128): s
; Clyo+8:yo#8+8] [x0+8:x0+8+8] = 0 .mapToThreads ({1, 32})

+ in(x+1,y) .mapToBlocks ({64, 128})

.useSharedMemory (true)

for ko in range(128):
for yi in range(8):

O~

out(x,y) = blurx(x,y-l) for xi in range(8): :
+ blurx(x,y) for ki in range(8): .usePrivateMemory (true)
bl 1 Clyo*8+yi] [xo*8+xi] += .unrollCopyShared(false)
+ bturxix, y+l) Alko*B+kil [yos8+yil + Blkox8+kil [xox8+xil .unroll(4);

Input: Schedule ‘
blurx: split x by 4 — x, X,
vectorize: X,

+ Cache Data on Accelerator Special Buffer
CL = s.cache_write(C, vdla.acc_buffer)
AL = s.cache_read(A, vdla.inp_buffer)
# additional schedule steps omitted ..

TC (Vasilache et.al. 2018)

store at out. X

compute at out. Y, + Map to Accelerator Tensor Instructions

s[CL].tensorize(yi, vdla.gemm8x8)

out: splitx by 4 — x , x,
splityby4—y,vy,

mm = MatMul(M,N,K)(GL,GL,GL)(Kernel)

reorder;yo’xu’yi’xi ﬁi}%lf” mm // resulting intermediate specs below
parallelize: y, St .tile(128,128) // MatMul (128,128 ,K)(GL,GL,GL) (Kernel)
vectorize: x, c: 0..127 . to(Block) // MatMul (128,128 ,K)(GL,GL,GL)(Block )

.load(A, SH, _) // MatMul(128,128,K)(SH,GL,GL)(Block )
.load(A, SH, _) // MatMul(128,128,K)(SH,SH,GL)(Block )
.tile(64,32) // MatMul (64, 32, K)(SH,SH,GL)(Block )
.to(Warp) // MatMul (64, 32, K)(SH,SH,GL)(Warp )
.tile(8,8) // MatMul(8, 8, K)(SH,SH,GL)(Warp )
.to(Thread) // MatMul(8, 8, K)(SH,SH,GL)(Thread)
.load(A, RF, _) // MatMul(8, 8, K)(RF,SH,GL)(Thread)
.load(B, RF, _) // MatMul(8, 8, K)(RF,RF,GL)(Thread)
.tile(1,1) // MatMul(1l, 1, K)(RF,RF,GL)(Thread)
.done (dot.cu) // invoke codegen, emit dot micro-kernel

Fireiron (Hagedorn et.al. 2020)

Halide (Ragan-Kelley et.al. 2013)

nroll h by 8
nroll k by 2
ectorized on }

iter twice along h

re: 0..127
nroll h by 13
nroll k by 2
Fectorized on K

L™ TTile (Tollenaere et.al. 2021)

Also rewrite systems with semantic
guarantees: Lift, Elevate, Rise




User-Schedulable Languages... Actually Time-Tested

# Avoid spurious versioning # Peel and shift to enable fusion Distribution Distribute loop at depth L over the statements IJ, with statement sy going into rp‘l‘ loop.
addContext (C1L1, ' ITMAX>=9") peel (enclose (C3L1 £3%) ’ 5
addContext (C1L1, 'doloop ub>=ITMAX’) peel (enclose (C3L1 ,'N=3") Requirements: Vs, s, s, € DAs, € D= loop(f;) AL < csl(s,, s,)
addContext (C1L1, ‘ doloop_ub<=ITMAX’) peel (enclose(C3L1 2 1,1),73") Transformation: Vs, € D, replace T, by [f1,..., fi* ™ syntactic(r ), f£,..., /"
addContext(L:Ll, 2=adl) peel(eanose(CBL: f' 1)y M3 Statement Reordering Reorder statements I at level L so that new position of statement s_isr_.
addContext (C1L1, 'M>=500") peel (enclose (C1L1 27) P P
addContext (C1L1, ' MNMIN>=500") peel (enclose(C1L1 LIN=2") Requirements: ¥s,, s, s, € DAs, € D =syntactic(fX) A L < esl(s,, s,) + 1A
addContext (C1L1, ' MNMIN<=M') peel (enclose (C1L1 1), 5273 (L <esl(sy,s,) &r,=r1,)
addContext (C1L1, ' MNMIN<=N') peel (enclose (C1L1 2,1),"4-2") Transformation: Vs, € D, replace T, by [fp]~ i ~.f1[=L ,syntactic(r,), fILHI [ERR) f!’“]
addContext (C1L1, 'M<=N") peel (enclose (C2L1 3L£)
addContext (C1L1, 'M>=N") peel (enclose (C2L1_: s N=Y ) Fusion Fuse the loops at level L for the statements D) with statement s, going into the r‘,”‘ loop.
peel (enclose (C2L1 L 1), 53} R i . i (L—1) L . .

¢# Move and shift calc3 backwards peel (enclose (C2L1 2,1) ;" M=3%) |quirgments: V°F' 5 85 € Ding 7 € D =syntactic( fy )yl IOOPUF JAL =22 eslf Sp2 sq) .20
shift (enclose(C3L1),{1’,707,70"}) shift(enclose(C1LL 2 1 2 1),{'0’,”1’,"1'}) (L—2<ecsl(s,s)+2=r,=r,)
shift (enclose(C3L10),{’1",”0"}) shift (enclose(C2L1 2 1 2 1),{"'0","2','2'}) Transformation: Vs, € D, replace T, by [f;,‘...f,[,L ﬂ,‘;\,nlacllc[r ) f,ly“ f,!L g fIL“..u..fp']

t (enclose(C3L11),{’1’,’0"})

t(C3L12, {"1’}) § Double fusion of the three nests Unimodular Transformation Apply a k x k unimodular transformation [’ to a perfectly nested loop

£(C3L13, {’1'}) motion (enclose(C2L1 2 1 2 1),TARGET 2 1 2 1) containing statements D at depth L... L+ k. Note: Unimodular transformations include loop inter-
shift(C3L14,{'1’}) motion (enclose (CiLl 2 1 "271),c211 2 T172°1) change, skewing and reversal [Ban90, WL91b].
shift(C3L15,{'1'}) motion(enclose(C3L1 2 1 2 _1),C1L1 2_1_2_1) Requirements: Vi, s,,s, s, € DAs, € DAL<i< L+ L':>loop[f;‘;]/\L+k5 eslisy, s,))
shift (C3L16, {'1’ 3 3
sn:-_:c3 1/: :'1' ;: # Register blocking and mrolllrg (factor 2) Transformation: Vs, € D, replace T, by [f!,..., f; AL g AR, ,.,f,‘,"*“]T,f;”“”,,,,.j;‘]

motion(enclose(C3L1),BLOOP

) time_stripmine(enclose (C3L1_|
motion (enclose (C3L10) ,BLOOP

Strip-mining Strip-mine the loop at level L for statements D with block size B

motion (enclose (C3L11),BLOO : ;:ZrQ::r::t::éi:iiiziifn L,E]) Requirement s: Vsp.sq s, € DA s, € D= ]oop[f:‘] AL<L rs[[sp. sq]} A B is a known integer constant
motion (C3L12,BLOOP) time_peel (enclose(C3L1 2 3),4,'2') Transformation: Vs, € D, replace T, by [j}ul o f,',L_”. B‘[fll,l‘l div B}, f“". Ml

motion (C3L13, BLOOP) time peel (enclose(C3L1_2 2,3),4,'N-2") W y y 2 - ;

motion (C3L14,BLOOP) r_ime-pee- [en:loset:ELl— - 21,1),5,72') Index Set Splitting Split the index set of statements D using condition C

motion (C3L15, BLOOP) i 2 2,1)75;'M=2") Requirements: ' is affine expression of symbolic constants and indexes common to statements D.
motion (C3L16,BLO0E) 1.2)) Transformation: Vs, € D, replace T by (T, |C) U (7, | =C)

motion (C3L17,BLOOP)

URUK (Girbal et.al. 2006) Omega (Kelly & Pugh, 1991)

Common ancestor: the Alpha language for high-level synthesis
1992-... Le Verge, Quinton, Rajopadhye, Risset, Wilde...



Schedules as Pragmas

A Language for the Compact Representation of Multiple
[LCPC 2005] Program Versions

Sebastien Donadio!*2, James Brodman?, Thomas Roeder®, Kamen Yotov®,

Denis Barthou?, Albert Cohen?®, Maria Jestis Garzaran?, David Padua?,
and Keshav Pingali®

' BULL SA
: University of Versailles St-Quentin-en-Y velines
% INRIA Futurs
4 University of Illinois at Urbana-Champaign
® Cornell University

Abstract. As processor complexity increases compilers tend to deliver subop-
timal performance. Library generators such as ATLAS, FFTW and SPIRALz
overcome this issue by empirically searching in the space of possible program
versions for the one that performs the best. Empirical search can also be applied
by programmers, but because they lack a tool to automate the process, program-
mers need to manually re-write the application in terms of several parameters
whose best value will be determined by the empirical search in the target ma-
chine.

In this paper, we present the design of an annotation language, meant to be
used either as an intermediate representation within library generators or directly
by the programmer. This language that we call X represents parameterized pro-
grams in a compact and natural way. It provides an powerful optimization frame-
work for high performance computing.

&€ > C M@ 25 labrifr/perso/barthou/x

Xlanguage

Description of Xlanguage

* begin/end directives:

#pragma xlang begin
for (i=..; i<..; i++) {

#pragma xlang end

They surround the outermost loop where all transformations will apply. All loops must be
normalized with an affectation i=.., a condition of the kind i<.. and an increment either
like i++ or i=i+..

« transformations: all loops are identified by their loop counter. All transformations can
be put right after the outermost loop and they will be applied in sequence.

#pragma xlang transform interchange(i,j) interchange loopsiand j. Loopsiand j
must be perfectly nested (eitheriin j orj ini).

#pragma xlang transform unroll(i,n) makes a partial unroll of loop i, with unroll
factor n (n>0)

#pragma xlang transform fission(i) fissions loop i. Several fissions are possible if
the loop has more than 2 statements. All solutions are explored.

#pragma xlang transform fusion(i,j) fusions loops iand j that must be in sequence.

Lower and upper bounds must be the same (syntactically), and the increment as well.

#pragma xlang transform stripmine(i,ii,n) strip mines loop i (with factor n) and
creates a new inner loop ii.

#pragma xlang transform tile(i,ii,n) same as strip mine, but the new loop ii is
created at the innermost position of the loopnest.

#pragma xlang transform [ transformationi, ... ] applies one of the
transformations of the list (this is an OR). Transformations can be one of the previous
ones (unroll(i,n), fission(i,j),fusion(i,j)...).

#pragma xlang transform nop does nothing. Useful for OR construct

¢ parameters

#pragma xlang parameter X [vall,val2,...] defines X with possible values
vall,val2...

Documentation

Description of Xlanguage can be f
version has only a subset of the fez

Combining Experimental Search
Optimization. Julien Jaeger and D
Machine Learning Approaches to /
January 2009. [ bib | .pdf ]

Loop Optimization using Adapti
Barthou, Sebastien Donadio, Alexc
Jalby. In ACM/IEEE Int. Symp. on
San Jose, California, March 2007.

Iterative Compilation with Kern
Alexandre Duchateau, William Jall
and Compilers for Parallel Compu
Science, pages 173-189, New Orle

A Language for the Compact Rej
Sebastien Donadio, James Brodma
Albert Cohen, Maria Garzaran, Da
Languages and Compilers for Par
Computer Science, pages 136-151,
Verlag. [ bib | .pdf ]




The Compiler Has More Interfaces Than You Think

A Polynomial Spilling Heuristic: Layered Allocation
[CGO 2013]
Boubacar Diouf Albert Cohen Fabrice Rastello
Processor Virtualization and Split Compilation for
Heterogeneous Multicore Embedded Systems

[DAC 2010]
Albert Cohen Erven Rohou

Ak .
Re Vapor SIMD: Auto-Vectorize Once, Run
the
ar [CGO 2011] Everywhere
0% Al
° 1‘ Em
ove dri Dorit Nuzman®, Sergei Dyshel*, Erven Rohou', Ira Rosen*,
We :g Kevin Williams', David Yustef, Albert Cohen*, and Ayal Zaks*

Ity e *IBM Haifa Research Lab, Haifa, Israel — HIPEAC member, Email: (dorit,sergeid,irar,zaks) @il.ibm.com
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for traininﬁ and inference. Our aggroach is architecture in-

Albert Cohen
Google DeepMind, France

Abstract
There is a growing interest in enhancing compiler optimiza-
tions with ML models, yet interactions between compilers
and ML frameworks remain challenging. Some optimiza-
tions require tightly coupled models and compiler internals,
ralsmg issues with modularity, performance and framework
d Practical depl and transp. for
the end user are also xmponant concerns. We propose ML-
CoMPILER-BRIDGE to enable ML model development within
a traditional Python framework while making end-to-end in-
tegration with an optimizing compiler possible and efficient.
We evaluate it on both research and production use cases, for
training and inference, over several optimization problems,
multiple compilers and its versions, and gym infrastructures.

Siddharth Jain
1T Hyderabad, India

Rajiv Shailesh Chitale
1T Hyderabad, India

Mircea Trofin
Google, USA

Umesh Kalvakuntla
1T Hyderabad, India

Eugene Brevdo
Google DeepMind, USA

Ramakrishna Upadrasta
IIT Hyderabad, India

ML and Reinforcement Learning (RL) approaches have been
proposed to improve optimizations like vectorization [21, 36],
loop unrolling, distribution [25, 43, function inlining [27, 47],
register allocation [17, 26, 46, 50], prediction of phase se-
quences [5, 23, 24], among many others [2, 53]. More specifi-
cally, the widely used LLVM compiler [29] has support for RL-
based inlining decisions from version 11, and RL-based evic-
tion decisions in its register allocator from version 14 [46].
The title of our paper acknowledges this growing trend and
anticipates the needs of the ML-enabled optimizations that
are yet to come, in the spirit of Landis’ seminal paper [28] on
the diversity of existing and future programming languages.
Setting up an ML-based compiler optimization is a chal-
lenging task. In addition to model design, it involves special-

ized data collection, compiler engineering, packaging:

RL4REAL: Reinforcement Learning for Register

Allocation
S. VenkataKeerthy Siddharth Jain Anilava Kundu
IIT Hyderabad 1IT Hyderabad IIT Hyderabad
India India India
Rohit Aggarwal Albert Cohen Ramakrishna Upadrasta
IIT Hyderabad Google IIT Hyderabad
India France India

Abstract
We aim to automate decades of research and experience in
register allocation, leveraging machine learning. We tackle
this problem by embedding a multi-agent reinforcement
learning algorithm within LLVM, training it with the state
of the art techniques. We formalize the constraints that pre-
cisely define the problem for a given instruction-set archi-
tecture, while ensuring that the generated code preserves
semantic correctness. We also develop a gRPC based frame-
work providing a modular and efficient compiler interface

problem is reducible to graph coloring, which is one of the
classical NP-Complete problems [8, 22]. Register allocation
as an optimization involves additional sub-tasks, more than
graph coloring itself [8]. Several formulations have been
proposed that return exact, or heuristic-based solutions.
Broadly, solutions are often formulated as constraint-based
optimizations [34, 38], ILP [3, 5, 12, 42], PBQP [31], game-
theoretic approaches [45], and are fed to a variety of solvers.
In general, these approaches are known to have scalability
issues. On the other hand, heuristic-based approaches have
been widely used owing to their scalability: reasonable solu-
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MLIR

Infrastructure for Compiler Construction



Controllable Compiler Optimizations

e Algorithm/Model level
Python schedules, Lucke et al.
o Expose codegen building blocks
to performance engineers
o Reuse schedules across
models/layers and targets

e IR-level
MLIR transform dialect to construct
“custom codegen flows”, tutorial, recording

The MLIR Transform Dialect

Your compiler is more powerful than you think

[CGO 2025]

Martin Liicke, U. Edinburgh

Oleksander Zinenko, Google DeepMind
Albert Cohen, Google DeepMind
William Moses, Google DeepMind and UIUC
Michel Steuwer, TU Berlin

Abstract

To take full advantage of a specific hardware target, perfor-
mance engineers need to gain control on compilers in order
to leverage their domain knowledge about the program and
hardware. Yet, modern compilers are poorly controlled, usu-
ally by configuring a sequence of coarse-grained monolithic
black-box passes, or by means of predefined compiler anno-
tations/pragmas. These can be effective, but often do not let
users precisely optimize their varying compute loads. As a
consequence, performance engineers have to resort to imple-
menting custom passes for a specific optimization heuristic,
requiring compiler engineering expert knowledge.

In this paper, we present a technique that p
grained control of general-purpose compilers by
the Transform dialect, a controllable IR-based tra
system implemented in MLIR. The Transform di
ers performance engineers to optimize their y
pute loads by composing and reusing existing—I
hidden—compiler features without the need tc
new passes or even rebuilding the compiler.

We demonstrate in five case studies that thy
dialect enables precise, safe composition of co1
formations and allows for straightforward inte,
state-of-the-art search methods.

—~

and to perform specific optimizations parameterized by their
corresponding flags— e.g. apply loop invariant code motion on
all loops. However, this coarse level of control is increasingly
insufficient to optimize programs for today’s heterogeneous
hardware that require precise optimization decisions. Prag-
mas, or compiler annotations in the source code, provide finer
grained control—e.g. vectorization or unrolling hints. These
are effective but their implementation requires in-depth and
non-modular changes to the compiler, hence their restriction
to specific cases anticipated by compiler engineers.

Often specific parts of a program dominate the overall
runtime and are worth optimizing precisely or offloading to

DEVELOPERS MEETING

Tutorial: Controllable Transformations in MLIR



https://mlir.llvm.org/docs/Dialects/Transform/
https://docs.google.com/presentation/d/1UQ0oYRgi39lKF4fzb2Wm-z7guCmyF7hnRBScRbEz1B0/edit?usp=sharing&resourcekey=0-3VDNsP5FyX7B8nt68A8H-g
https://www.youtube.com/watch?v=P4gUj3QtH_Y

Example: Python (JAX) Schedules

transform.sequence

def schedule (module: OpHandle) -> None: Py func.func public @batch_matmul(%arg®: tensor<128x86x32xf32>,

matmul = module.match ops (linalg.BatchMatmulOp ) %argl: tensor<128x32x320xf32>)->
fill = module.match ops (linalg.FillOp) (tensor<128x80x320xf32>) {
for all = matmul. tile to forall (tile sizes=[64, 64, 1]) // prepare output
fill. fuse_into (for_all) %0 = tensor.empty() : tensor<128x80x320xf32>
for all2 = matmul. tile to forall (tile sizes=[4, 32, 1]) %cst = arith.constant 0.6 : f32
# %1 = linalg.fill ins(%cst) outs(%0)

%2 = linalg.batch_matmul ins(%arg®, %argl) outs(%1)

return %2 : tensor<128x80x320xf32>

}
Generates transform IR
/lnject
--apply_transform_script
.mlir

($module: !transform.op<module>) {

$matmul transform.match_op name “linalg.batch_matmul” in %module
/171
$forall, %tiled = transform.tile_to_forall_op %matmul tile sizes [64, 64, 1]

1110001

$fused, %containing = transform.fuse_into_containing_op %forall

/171

$forall0, %tiled0 = transform.tile_to_forall_op %tiled tile sizes [4, 32, 1]
/71

.mlir

.mlir

%argl: tensor<128x32x320xf32>) ->
(tensor<128x80x320xf32>) {

: tensor<128x80x320xf32>

: f32

%0 = tensor.empty()
%cst arith.constant 0.0
scf.forall (64, 64, 1) {
%1 = linalg.fill
scf.forall (4, 32, 1) {
%2 = linalg.batch_matmul
/70

func.func public @batch_matmul(%arg®: tensor<128x80x32xf32>,

28




1.

The Schedule is the Compiler

Schedule completely drives the compiler

def schedule(module: OpHandle) -> None:
#[...]
# lower to llvm is actually:
module.convert linalg to loops pasq)
module.convert scf to cf pasg()
module.lower affine pass()
module.convert vector to llvm pasg)
module.convert math to 1llvm pasg)
module.finalize memref to llvm conversion pass$)
module.func to llvm pass()

module.reconcile unrealized casts pasg)

|

Every pass can be initiated through this interface
module.run pass(”MyPassName”)

2.

Constructing new Passes on-the-fly

with handle.apply patterns():
structured. ApplyTilingCanonicalizationPatternsOg)
loop. ApplyForLoopCanonicalizationPatternsOp)

transform ApplyCanonicalizationPatternsOx)

- Not possible with any ML compiler until now
- Combination of patterns does not have to be
known statically

29



) Enzyme Framework
Billy Moses (UIUC / Google)

Optimize Optimize m

Enzyme %>
L

M

EXE

CodeGen

https://enzyme.mit.edu
And now Also on MLIR, JAX, Julia! https://github.com/EnzymeAD/Enzyme-JAX



https://enzyme.mit.edu
https://github.com/EnzymeAD/Enzyme-JAX

Enzyme Autodiff: Everything, Everywhere, All at Once

O (n?) O (n) O (n)

RESES L d_res = 0.0
for i=0..n { res = mag(in) SR
AR T = . imi for i=0..n { for i=n..0 {
out[il /= mag(in) Optimize A AD PRy gy
by ) .
] Vmag(d_in, d_res)

O (nz) O (nz) O <n2>

1= for 1=n..0 { for i=n..0 {
fOEH;E?j'?:{ma (in) dires = dooUtfil o d_res = d_out[i]..
} o = AD Vmag(d_in, d_res) Opt|m|ze Vmag(d_in, d_res)
} i




Computational Science — LLVM — MLIR — Heterogeneous Platform

Oceananigans Other Julia Software C/C++/Fortran/Rust/Swift/Python
implemented asl i
Julia code

function difference_kernel(y, x)
i = threadIdx().x + (blockIdx().x - 1) * blockDim().x

‘s’ if i <= length(x) - 2
£ y[il = x[i] - 2 % x[i+1] + x[i+2]
< end
& end
E
= function model(...)
= @cuda threads=... blocks= difference_kernel(y, x)
@cuda threads=... blocks= difference_kernel(x, y)
end
l]ulja Compiler
LLVM IR
define void @julia_difference_kernel_890({}* %y, {}* %x) {
top

call i32 @llvm.nvvm.read.ptx.sreg. tid.x()
= add nuw nsw i32 %3, 1

%arraylen = load 164, i64x %arraylen_ptr, align 8
%13 = add nsw 164 %arraylen, -2

%.not = icmp sgt i64 %11, %13
br i1 %.not, label %common.ret, label %31

L31: preds top
%14 = add nsw i64 %11, -1

%inbounds = icmp ult i64 %14, %arraylen
br i1 %inbounds, label %idxend, label %oob

oob: preds = %L31
call fastcc void @gpu_report_exception()
unreachable

idxend26: ; preds = %idxend17
%17 = bitcast {}* %2 to doublexx
%arrayptr33 = load double*, doublexx %17
%18 = getelementptr inbounds double, doublex %arrayptr33, i64 %14
%arrayref = load double, doublex %18
%19 = getelementptr inbounds double, double* %arrayptr33, i64 %11
%arrayref11 = load double, doublex %19
%20 = fmul double %arrayref1l, 2.000000e+00

JRaise to MLIR

Enzyme-JAX

L Raise to MLIR

MLIR

func. func @difference_kernel(%y : memref<100xf64>, %x :

1ffine.parallel %argl = @ to 100 {
%x1 = aff load %x[%argl]

memref<100xf64>) {

%x2 = affine.load %x[%argl * 1]

1e.store %sum, %y[%argl]

lMultidimensionalization

slice %x[1:98]
slice %x[2:99]
o.multiply %x2, tensor<2.0>
ehlo.add %x1, %mul

lTensor Raising

%11
%12

convolve %x, tensor<[1.0, -2.0, 1.0]>
o.convolve %i1, tensor<[1.0, -2.0, 1.0]>

lTensor Optimization

e )

%res =

lehlo.convolve %x, tensor<[1.0, -4.0, 6.0, -4.0, 1.0]>

Targeting TP

~

b §

-

TPU cloud GPU cluster CPU cluster

TPU node 1
convolve %x [1:50]
send %x[45:50]
recv %x[50:55]

N

TPU node 2
convolve %x [50:100]
send %x[50:55]
recv %x[45:50]

GPU node 1

GPU node 2




Look mom, no MPI!
Ad-hoc runtimes and high-level composable abstractions

< Data-center Network > L fca
OO0 OO0
Slice 1 |Gmmtin A LG & & Slice 2
(Blue) (Pink)
Pod 1 Pod 2
TPU Chips Inter-Chip Interconnect (ICl)

https://cloud.qgoogle.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads



https://cloud.google.com/blog/products/compute/using-cloud-tpu-multislice-to-scale-ai-workloads

Distribution and Mapping HLO Is More Expressive Than You Think

Sharded Matrix Multiplication

S Y Listing 1 Reactant code for compiling Julia functions
) reshape(Reactant.devices(), :, 4), (:x, :y) using Reactant

sharding = Sharding.NamedSharding(mesh, (:x, :y))

x = Reactant.to_rarray(rand(Float32, 8, 4); sharding) di = Reactant.to_rarray(ones(10))

y = Reactant.to_rarray(rand(Float32, 4, 8); sharding) b = Reactant.to_rarray(ones(10))

@jit x x y

sinsum_add(x, y) = sum(sin.(x) .+ y)

lLower to MLIR f = @compile sinsum_add(a, b)

MLIR Pre-Sharding Propagation

module @"reactant_x" attributes {mhlo.num_partitions = 8 : i64, mhlo.num_replicas =1 : # one can now run the program
— 164} {
sdy.mesh @mesh = <["x"=2, "y"=4]> f(a, b)
func. func @main(%arg@: tensor<4x8xf32> {sdy.sharding = #sdy.sharding<@mesh, [{"y"},
— {"x"}1>}, %argl: tensor<8x4xf32> {sdy.sharding = #sdy.sharding<@mesh, [{"y"},
«— {"x"}1>}) -> tensor<8x8xf32> {
%0 = stablehlo.dot_general %argl, %arg@, contracting_dims = [1] x [@], precision

< [DEFAULT, DEFAULT] : (tensor<8x4xf32>, tensor<4x8xf32>) -> tensor<8x8xf32>

Listing 2 Compiled MLIR from Julia code

return %@ : tensor<gx8xf32> module @reactant_sinsum_add attributes {mhlo.num_partitions
)) — =1 : i64, mhlo.num_replicas = 1 : i64} {
- = func.func @main(%argd: tensor<10xf64>, %argl:
lPropagate Sharding
— tensor<10xf64>) -> tensor<f64> {
MLIR Post-Sharding Propagation %cst = stablehlo.constant dense<@.0> : tensor<f64>
module @"reactant_x" attributes {mhlo.num_partitions = 8 : 164, mhlo.num_replicas = 1 : %0 = stablehlo.sine %arg@ . tensor<10xf64>
o 164} { : §
func. func @main(%arg@: tensor<4x8xf32> {mhlo.sharding = %1 = stablehlo.add %@, %argl : tensor<10xf64>
— "{devices=[4,2]<=[2,4]T(1,0)}"}, %argl: tensor<8x4xf32> {mhlo.sharding = - o e vy :
o "{devices=[4,21<=[2,41T(1,0)}"}) -> (tensor<8x8xf32> {mhlo.sharding = %2 = stablehlo.reduce (%1 1r.11t. {,cst) applies
< "{devices=[4,21<=[2,4]T(1,0)}"}) { — stablehlo.add across dimensions = [0] :
%0 = stablehlo.dot_general %argl, %arg@, contracting_dims = [1] x [@], precision = = (tensor<1 oxf64> tensor<f64>) -> tensor<f64>
< [DEFAULT, DEFAULT] {mhlo.sharding = "{devices=[4,21<=[2,4]T(1,0)}"} : it
< (tensor<8x4xf32>, tensor<4x8xf32>) -> tensor<8x8xf32> return %2 : tensor<f64>
return %0 : tensor<8x8xf32> }
}

} 3




Q2: Looking ahead to 2030, do you expect the principal
bottleneck for extreme-scale Al to be data, algorithms, resilience
or energy, and how does that prediction shape your research
priorities today?

The principal bottleneck is “smaller is better”

* Generate a comic storyboard based on the "smaller is better" meme, with a white background.



Q3: Given the different developments in “computer architecture
for Al” and “computational science”, do you think we'll see a
convergence or divergence of roadmaps?

IT's Tie
ECONoM Y’

a SWfIP/

Convergence:

Divergence: commodity Al vs. supercomputing Al



