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Abstract

The Top500 is used to rank supercomputers. It benchmarks different architectures based mostly on dense matrix-matrix multiplications. However linear
algebra problems studied in recent years require very large sparse matrices (eg: machine learning manipulating large datasets), meaning that the
overall performance of the code will be far from the peak obtained with dense linear algebra on commonly used cache-heavy computer architectures.
In this study, we focus on several benchmarks (PageRank, Conjugate Gradient, Matrix Multiplication from Attention Layer in Machine Learning) and
test their performance on different cluster architectures (with different CPU tamilies and multiple generations of interconnect). Our implementation is
designed to handle very large, very sparse problems by distributing the vectors across the system.
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