Performance of Very Large Very Sparse Matrix Matrix
and Very Large Very Sparse Matrix Vector ‘] FLATIIRON

Multiplication on Ditferent Cluster Architectures

| N S T T U T E

Maxence Buisson, Géraud Krawezik
Scientific Computing Core, Flatiron Institute, New York

Abstract

The Top500 is used to rank supercomputers. It benchmarks different architectures based mostly on dense matrix-matrix multiplications. However linear
algebra problems studied in recent years require very large sparse matrices (eg: machine learning manipulating large datasets), meaning that the
overall performance of the code will be far from the peak obtained with dense linear algebra on commonly used cache-heavy computer architectures.
In this study, we focus on several benchmarks (PageRank, Conjugate Gradient, Matrix Multiplication from Attention Layer in Machine Learning) and
test their performance on different cluster architectures (with different CPU tamilies and multiple generations of interconnect). Our implementation is
designed to handle very large, very sparse problems by distributing the vectors across the system.

Data Distribution Analyse
Matrix-Vector Product Number of Floating operation per Number of Floating operation per
AllReduce Input Output cycle during conjugate gradient: cycle during Matrix Multiplication:
vector vector 0.3 0.5
Conjugate Gradient : SIMD on weak scaling Matrix Multiplication: SIMD on weak scaling
N = sqrt(nodes) * 107 NNZ/row = sqrt(nodes) * 100 N = sqrt(nodes) * 10"6 NNZ / row = sqgrt(nodes) * 100
1000 800
g 750 5 600
g 500 Q400
5 T
E g 250 — '1 g 200
't =
AllReduce T 2 4 8 18 3 1/8 2/32 4/16 8/8 16/4 32/16
1. Ma;rlx d(lftrllbLSJtIOﬂ.:f. o . Nodes Nodes / ranks per node
a. rnow, Col: ecitied at runtime ,
|O. _ B Avx512 B Avx2 Without
2. All cores on a given block column hold the same parts of the input vector .
. Memory bandwidth performance
3. All cores on a given block row hold the same parts of the output vector STREAM
] L . B Skylake: DDR4-2666
a. After the multiplication AllReduce is used on each block row 800
. . . . = B Cascadelake: DDR4-2933
4. For the next iteration, Bcast is used on each block column to redistribute 2 > ,
| B 400 ome: DDR4-3200
th? mput.vector‘ o =t B |celake: DDR4-3200
Matrix-Matrix Multiplication: S 200 \ . Hicelake Popeye: DDR4-3200
e Partially Distributed: =) l H H ‘ m Genoa: DDR5-4800
ks | | |

o Input and output matrices are distributed like the vectors Copy Scale Add Triad
e Fully Distributed:
o Distribution of input and output matrices by column

MPI1_AlIReduce performance MPI_AlIReduce performance
Pattern similar to Conjugate Gradient Pattern similar to Matrix Multiplication

4
Results s 2 B < B
) ' >
- . c = 2
PageRank: Strong Scaling PageRank: Parallel Efficiency (Weak Scaling) % [s
N= 100000000 NNZ per row = 100 N = sqrt(nodes) * 107 NNZ / row = sqrt(nodes) * 100 — 0.8 8 1
2 175 100.00% 0
= 150 80.00%
L J
125
S 60.00% MPI_BCast performance MPI_BCast performance
&) 5 .
§ gg 40.00% Pattern similar to Conjugate Gradient Pattern similar to Matrix Multiplication
S 2 20.00% 3
Q 0 0.00% - 2
C g 2
Conjugate Gradient: Strong Scaling Conjugate Gradient: Parallel Efficiency (Weak Scaling) ‘; 1 :
N = 1077 NNZ / row = 100 N = sqrt(nodes) * 10~7 NNZ / row = sqgrt(nodes) * 100 2 o n % 1
) . Q
250 T 54 9 0
£ R T 1 2 4 8 16 32 \® (B (O g\ g\ B N0
S 150 AR N0
§ 100 50.00%
e Nodes Nodes / Rank per node
S 50
|5
£ 0 0.00% '
1 2 4 8 16 32 Out '
Nodes Nodes utioo
Matrix Multiplication: Strong Scaling Matrix Multiplication: Parallel Efficiency (Weak Scaling) . . : :
N = 107, NNZ / row = 100 N = sqrtinodes) * 1% NNZ / row = sqrt{nodes) * 100 Lejlcvlvll\th d!ﬁerent NUI\k/I,i\) settings in the BIOS (for now only used 1
2 1000 150.00% region per socke
§ 250 o Recommended by some vendors for hybrid MPI + OpenMP codes
o 100.00% . . .
> 500 o How does the software view matching the hardware impact
é 250 50.00% oerformance?
e 0 0 Compare Fugaku results with Ookami (tested at Stony Brook without
= 0.00% P 9 y
Q AN (N0 (B e AR ? 1L AP 2 b AD f
277 n AR AP o\7 a0\ Totu)
Nodes 7 ranks per iode N —— Compare the 2 implementations of sparse matrix to dense matrix

multiplication

B Skylake M Cascadelake

Rome Mlicelake Mlcelake Popeye HGenoa

CONTACT :

maxence.buisson2@orange.fr

