

Performance of Very Large Very Sparse Matrix Matrix
and Very Large Very Sparse Matrix Vector
Multiplication on Different Cluster Architectures

Scientific Computing Core, Flatiron Institute, New York
Maxence Buisson, Géraud Krawezik

The Top500 is used to rank supercomputers. It benchmarks different architectures based mostly on dense matrix-matrix multiplications. However linear
algebra problems studied in recent years require very large sparse matrices (eg: machine learning manipulating large datasets), meaning that the
overall performance of the code will be far from the peak obtained with dense linear algebra on commonly used cache-heavy computer architectures.
In this study, we focus on several benchmarks (PageRank, Conjugate Gradient, Matrix Multiplication from Attention Layer in Machine Learning) and
test their performance on different cluster architectures (with different CPU families and multiple generations of interconnect). Our implementation is
designed to handle very large, very sparse problems by distributing the vectors across the system.

maxence.buisson2@orange.fr
CONTACT :

Graph
ene

Quantum
friction

Core 0 Core 1

Output
vector

Input
vector

AllReduce

Matrix

AllReduce

Bcast

● Test with different NUMA settings in the BIOS (for now only used 1
NUMA region per socket)
○ Recommended by some vendors for hybrid MPI + OpenMP codes
○ How does the software view matching the hardware impact

performance?
● Compare Fugaku results with Ookami (tested at Stony Brook without

Tofu)
● Compare the 2 implementations of sparse matrix to dense matrix

multiplication

1. Matrix distribution:
a. Row, Col : Specified at runtime

2. All cores on a given block column hold the same parts of the input vector
3. All cores on a given block row hold the same parts of the output vector

a. After the multiplication AllReduce is used on each block row
4. For the next iteration, Bcast is used on each block column to redistribute

the input vector
Matrix-Matrix Multiplication:
● Partially Distributed:

○ Input and output matrices are distributed like the vectors
● Fully Distributed:

○ Distribution of input and output matrices by column

Number of Floating operation per
cycle during conjugate gradient:
0.3

Data Distribution

Matrix-Vector Product Number of Floating operation per
cycle during Matrix Multiplication:
0.5

Analyse

Outlook

Results

Abstract

Skylake: DDR4-2666
Cascadelake: DDR4-2933
Rome: DDR4-3200
Icelake: DDR4-3200
Icelake Popeye: DDR4-3200
Genoa: DDR5-4800

 Skylake Cascadelake Rome Icelake Icelake Popeye Genoa

NodesNodes

Avx512 Avx2 Without

