
Beyond double precision: AI-driven innovations in
HPC offer a quantum leap to scientific computing
Harun Bayraktar, Senior Director – Libraries Engineering

1st International Workshop on Distributed and Parallel Programming for
Extreme-scale AI | June 16-17th, 2025 | Paris, France

Overview

• AI has led to significant innovations in mixed-
precision (MxP) computing, processor, and system
architecture

• Opportunities and challenges for scientific computing

• We can deliver much higher throughput and
efficiency by employing

• MxP algorithms
• Floating Point Emulation

• We should not think about AI, HPC, and Scientific
Computing as separate things

What I would like for you to remember from this talk

A Matrix Multiplication Focused
Look at Developments that
Enabled AI Model Size &
Capability Growth

Computation used to train notable AI systems, by domain
Growth over the last decade

https://ourworldindata.org/artificial-intelligence

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence

Developments That Made This Possible
A Virtuous Cycle

Reduced & Mixed Precision

Chip Design & Manufacturing

Algorithms

AI Model Growth

Datacenters

Performance of a Single GPU

1.2GW Stargate, Abilene, TX, USA

Specialized Instructions Amortize Overhead
The Case for Tensor Cores for Matrix Multiplications

Operation Energy** Overhead*

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%

HMMA 110pJ 22%

IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch – 30pJ
**Energy numbers from 45nm process
Source Bill Dally, Chief Scientist and SVP of Research, NVIDIA Corporation & Adjunct Professor of CS and EE, Stanford
https://www.youtube.com/watch?v=gofI47kfD28
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf

https://www.youtube.com/watch?v=gofI47kfD28
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf

Reduced Precision Floating Point Types
Numerical Concerns in LLMs

• FP8: LLM training and inference for Llama4 most
recently, MOEs, …

• FP8 is either e4m3 or e5m2
• Allows us be even more compact than before just like

half-floats did at some point

• Introduced on Hopper with 2x more throughput

• Is that enough though? How can we avoid losing
too much of the dynamic range?

• Key is scaling
• But scaling can be slow if not done in hardware
• What kind of scaling do we need?

Hardware-accelerated Scaling
Hopper architecture GPUs

• Hopper GPUs introduced tensor-wide HW scaling
• One problem is that entire matrices A & B are

normalized with one scaling factor
• You need to either calculate scaleD at every step of

training
• Remember it’s a global value so not tile-based

• Or adopt delayed scaling to pay a smaller price in
accuracy but 10% faster e2e

• The main issue is lack of flexibility
• That why scaling recipes like DeepSeek appeared
• Or channel-wide/outer vector recipes
• Obviously on Hopper there is a perf hit
• Maintaining more control over accuracy is worth it

https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/

https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/

Channel- and block-scaled FP8 matmuls on NVIDIA Hopper
Introduced with cuBLAS in CUDA 12.9

https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/

https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/

Block-Scaled Floating-Point Types
aka Microscaled Formats

Each 32-element block has
a unique scaling factor

Blackwell

§ Blackwell enables FP8 and FP4 with scaling applied to matrix sub-blocks 1

§ Block-scaled FP8 is more accurate than tensor scaling
§ HW support makes block scaling fast and efficient
§ No need to transfer the tensor to GPU global memory before computing the scaling factor
§ No need to use delayed scaling

1 cuBLAS documentation https://docs.nvidia.com/cuda/cublas/#d-block-scaling-for-fp8-and-fp4-data-types

2 Samples: https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuBLASLt/LtMxfp8Matmul/sample_cublasLt_LtMxfp8Matmul.cu

Each 32-element block has
a unique scaling factor

HW-Accelerated Block-Scaling

const __nv_fp8_e8m0 *a_scale = … /* device pointer */
// set block scaling mode
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_MODE, &AScaleMode, sizeof(AScaleMode)));
// set scaling factors
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_POINTER, &a_scale, sizeof(a_scale)));

API example2

https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuBLASLt/LtMxfp8Matmul/sample_cublasLt_LtMxfp8Matmul.cu

cuBLAS Matmul Performance on Blackwell
Kernels and Runtime Heuristics in cuBLAS Optimized for B200 and GB200

For block-scaled FP8 and FP4, the baseline on Hopper is chosen to be FP8 with tensor scaling

…but what is this?

How do we implement kernels for fast matrix multiply on GPUs?

• Problem space is very large: M, N, K, Batch Size, Transposes,
Epilogues, Bias

• We need the maximum performance implementation for
each problem

𝐷 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝛼𝐴!?𝐵!? + 𝛽𝐶 + 𝑏𝑖𝑎𝑠)

NVIDIA H100 GPU

Blackwell B200 GPU

Challenges in Library Design & Development

How many kernel options are there on a GPU?
Hopper Generation & Newer

A. 100
B. 1,000
C. 10,000
D. 100,000
E. More than a million

Blackwell B200 GPU

How many kernel options are there on a GPU?
Hopper Generation & Newer

A. 100
B. 1,000
C. 10,000
D. 100,000
E. More than a million✅

Runtime Heuristics Using AI in an AI Library
…or how cuBLAS selects the best kernels from all possible kernels at runtime, and fast!

§ cuBLAS ships with lots of kernel families (or implementations)
§ Some are more suitable for a specific problem shapes than others
§ The library must offer best out-of-the-box perf at launch everywhere

§ We train a recommender model to make fast inference at runtime
§ Accuracy is guaranteed on an ensemble of problems (in geomean)
§ Runtime models can also be analytical
§ Autotuning can add extra performance for outliers (example)

More in cuBLAS 12.5 blogpost

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt/LtSgemmSimpleAutoTuning
https://developer.nvidia.com/blog/introducing-grouped-gemm-apis-in-cublas-and-more-performance-updates/

Developments That Made This Possible
A Virtuous Cycle

Reduced & Mixed Precision

Chip Design & Manufacturing

Algorithms

AI Model Growth

Datacenters

Performance of a Single GPU

1.2GW Stargate, Abilene, TX, USA

Mixed-Precision Computing &
Floating-Point Emulation

Single GPU Matrix Multiplication Performance
Tensor Core Throughput Over GPU Generations Since Introduction

112.5X

28X

How can we leverage higher performance and energy-efficient hardware?
Two different approaches

• Mixed-precision algorithms (e.g., iterative
refinement solvers, HPL-MxP) result in great
performance and efficiency gains

• Fundamentally different numerics and significant
adoption challenges due to the need to invest in
these algorithmic changes

• Emulation of FP64 and FP32 matrix multiplies
without sacrificing accuracy for a performance
gain and without requiring any code changes

• Requires robust implementations and community
acceptance even if code changes are not required

https://dl.acm.org/doi/10.1109/SC.2018.00050 https://arxiv.org/abs/2306.11975

https://dl.acm.org/doi/10.1109/SC.2018.00050
https://arxiv.org/abs/2306.11975

Full FP64 Precision on FP16 Tensor Cores

[1] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack and Higham Nicholas J., 2020, Mixed-precision iterative refinement using tensor cores
on GPUs to accelerate solution of linear systems, Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Convert precision

A64 à A16

LU factorization of A16

gives solution x0

Convert x0

to 64-bit precision

Compute residual ri = b – Axi

in FP64

Solve U-1L-1Aci = U-1L-1ri

by GMRES

Correct current solution

xi+1 = xi + ci in FP64

repeat until xi is
accurate enough

Input 64-bit matrix
A64 for LU

factorization

Output is IEEE-754
accurate FP64 result

Iterative step refines
accuracy of result to
desired precision

FP64
accuracy

Start by doing the
compute-intensive
factorization in FP16

LU-factorization algorithm[1] using low-precision
tensor cores to give an IEEE-754 FP64 accurate result

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Eating your cake and having it too: Both Power and Performance

Performance and Perf/Watt improvement when using
FP16 tensor cores with iterative refinement method

Complex matrix solve via LU decomposition
ZGESV on GH200, n=44000

FP64 FP16+FP64
Mixed

Precision
Benefit

Performance
(TFLOP/s)

41.1 160.1 3.9x

Perf/Watt
(GFLOPs/Watts)

74 425 5.7x

Power Usage GH200

Mixed-Precision Iterative Refinement Solver
Performance and Efficiency Improvements Across Four GPU Generations

PRELIMINARY DATA | FIGURES SUBJECT TO CHANGE

Historical Perspective on Emulation
The evolution of floating-point (FP) computation

Simulated floating-point
arithmetic utilizing
fixed-point
representations
IBM 701 Speedcoding
System

1950s

IBM Hexadecimal FP
Cray FP
Diversity in
representations

1960s-70s
IEEE 754
Standardization of FP

1985

FPU Coprocessor
Intel 8087

1980
Integrated FPU
Intel i486

1989
GPU Tensor Cores
introduced for for reduced
& mixed-precision
FP16, BF16, TF32, FP8,
NVFP4, MXFP8

2017+

FP emulation returns
(e.g., Ozaki-I & II)
GPU Tensor Cores
Accelerated Matrix
Multiplication using AI FP
types

Today
GPUs with
programmable shaders
NVIDIA GeForce3

2001

Performance and Perf/Watt: Emulated vs. Native HPL
At Max-P (Performance) Blackwell HPL runs 2.0x faster and 1.7x more efficiently using emulation (55 bits)

At Max-Q (Efficiency) Blackwell HPL runs 2.3x faster and 1.6x more efficiently using emulation (55 bits)

34.5
41.7

23.1

51.4

68.4 71.3

53.4

82.1

0

10

20

30

40

50

60

70

80

90

TFLOPS GFLOPS/Watt TFLOPS GFLOPS/Watt

Max-P (Performance) Max-Q (Efficiency)

Blackwell B200 1000W: HPL (Single GPU)

Native FP64 Emulation (S=7)

Double Precision Emulation using Ozaki-I Scheme
https://arxiv.org/abs/2409.13313
https://arxiv.org/abs/2306.11975

https://arxiv.org/abs/2409.13313
https://arxiv.org/abs/2306.11975

Quantum Espresso Performance With FP Emulation (Ozaki-I)
AuSurf Benchmark on Blackwell RTX (Low Native FP64)

No data points for relative error
indicate no difference in results

Reduced, Mixed-Precision, and AI for
Scientific Computing

Some Statistics From the Gordon Bell
Finalists
Looking at Reduced/Mixed-Precision Usage in the Last 10 Years

Year
Total # of
Finalists

Finalists w/
Reduced/MxP

Maximum
Performance

of
Winners

Winners w/
Reduced/MxP

2015 5 2 2.0PF 1 0
2016 6 1 ? 1 0
2017 3 2 18.9PF 1 1
2018 6 6 1.3EF 2 2
2019 2 2 90.9PF 1 1
2020 6 5 136PF 1 1
2021 6 3 4.4EF 1 1
2022 6 2 1.0EF 1 0
2023 6 4 0.66EF 1 1
2024 6 4 1.8EF 1 0
Total 52 31 11 7

60%!

Proposal

AlphaFold

On the topic of HPC & AI
Convergence or divergence?

https://x.com/Daniel_Bowers/status/1643774967115292672

https://x.com/Daniel_Bowers/status/1643774967115292672

Closing Remarks

• There will be an increased demand for library APIs
and algorithms that can deliver energy efficient,
high-throughput linear algebra capabilities for
reduced-precision types

• Mixed-Precision Algorithms
• Floating-Point Emulation
• Batched APIs

• Application and library developers have an
opportunity to do more with the resources present
on the evolving processor and system architectures

• Tools that aid precision tuning and mixed-precision
algorithm development are needed

• Energy efficient kernel design will become
increasingly important

• Max-Q vs. Max-P

• Scientific computing leverages both AI & HPC
• The role of AI will continue to grow
• Greater focus will be on algorithms that accelerate

both

What I would like for you to remember from this talk

GB200 NVL72

