NVIDIA.

Beyond double precision: Al-driven innovations in
HPC offer a quantum leap to scientific computing

Harun Bayraktar, Senior Director - Libraries Engineering

1st International Workshop on Distributed and Parallel Programming for
Extreme-scale Al | June 16-17th, 2025 | Paris, France

WARP
PHYSICS

cuDF
cuML

DATA SCIENCE
AND PROCESSING

CUDA-X FOR EVERY INDUSTRY

A
EQUIVARIANCE CUQUANTUM e e
TRT-LLM W CUDA-Q ATHER MEDICAL
cuDSS MEGATRON CUTENSOR Xr‘\/liLTYTIECS IMAGING
CUSPARSE N BRI
ccL QUANTUM COMPUTING
CUFFT cuDNN CHEMISTRY
AMGX CUTLASS
BLAS
COMPUTER AIDED “
ENGINEERING DEEP

LEARNING

SEQUENCING

PARABRICKS cuOPT AERIAL culITHO cuPYNUMERIC

SIONNA COMPUTATIONAL NUMERICAL

GENE DECISION
SIo LITHOGRAPHY COMPUTING

5G/6G
OPTIMIZATION SIGNAL

PROCESSING

Overview

Al has led to significant innovations in mixed-
precision (MxP) computing, processor, and system
architecture

Opportunities and challenges for scientific computing
We can deliver much higher throughput and
efficiency by employing

MxP algorithms

Floating Point Emulation

We should not think about Al, HPC, and Scientific
Computing as separate things

<A NVIDIA

A Matrix Multiplication Focused
Look at Developments that
Enabled Al Model Size &
Capability Growth

Computation used to train notable Al systems, by domain

Growth over the last decade

Training computation (petaFLOP)

o
disclosure-required at-100 billion-petaFLOP-under-the Executive O"dcr
o o o %P °°
10 billion o .* % 22,5,
wp ot v laleE
s ° ."9§’.0 30‘:\. e o°
100 million o® ¥ | ®© % o @0 pg¢ ®
® .{ 4 '* By ® ‘o‘
0 ® o0 ® o °
° ¢ # 00 O gemeete 30 8T ° o .
® @ o o 4 *% .‘ ® e "o @
1 million o0 » o ® 9
S s ® @
@ @ ® % o o ® 9™ " ®
s ° ® :' ®
. e® o o o © ® ®e o }.oo oy
® ° ‘.. e € »° e o o0 o °
10,000 @ iy ® g o o o o
(] ° ® ® .. ® @ Py o © ° ® ® ®
o
100. 8 é =
@ L)
& o® o)
o, o} ® o o
1 ® e}

Mar 17,2015 Apr 26,2017 Sep 8,2018 Jan 21,2020 Jun4,2021 Oct 17,2022 Feb 29,2024
Publication date

https://ourworldindata.org/artificial-intelligence

M Biology

M Games

M Image generation
M Language

M Multiple domains
M Other

M Robotics

M Speech

M Vision

<ANVIDIA I

https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence
https://ourworldindata.org/artificial-intelligence

IEEE FP64

IEEE FP32

TF32

IEEEFP16

BF16

FP8 E4M3

FP8 ESM2

Reduced & Mixed Precision

H Sign

Exponent ™ Mantissa

Developments That Made This Possible

Performance in TFLOP/s or TOP/s.

A Virtuous Cycle

Algorithms

&, 2B

Performance of a Single GPU

Hardware Evolution for Mixed-Precision Support S

10000
Lata

Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)
mFP64 mFP64 Tensor ®FP32 mFP16 Tensor
™ BF16 Tensor ™ FP8 Tensor INT8 Tensor FP4 Tensor

Datacenters

1.2GW Stargate, Abilene, TX, USA

Al Model Growth

Training computation (petaFLOP)

10 billion
100 million
.
1 million e &
.
. o
. .
10,000 . .
.
100
° ‘ *
d
o ? o® ® o

1
Mar 17,2015 Apr 26,2017 Sep8,2018 Jan 21,2020 Jun4,2021 Oct 17,2022 Feb 29,2024
Publication date

<ANVIDIA I

Specialized Instructions Amortize Overhead

The Case for Tensor Cores for Matrix Multiplications

9.7.14.4.5. Warp-level Matrix Multiply-and-Accumulate Instruction: wmma.mma

wmma . mma
Perform a single matrix multiply-and-accumulate operation across a warp

Syntax

// Floating point (.f16 multiplicands) wmma.mma
wmma.mma.sync.aligned.alayout.blayout.shape.dtype.ctype d, a, b, c;

// Integer (.u8/.s8 multiplicands) wmma.mma

wmma .mma.sync.aligned.alayout.blayout.shape.s32.atype.btype.s32{.satfinite} d, a, b, c;

.alayout = {.row, .col};

.blayout = {.row, .col};

.shape = {.m16n16k16, .m8n32k16, .m32n8k16};
.dtype = {.f16, .f32};

.atype = {.s8, .u8};

.btype = {.s8, .u8};

.ctype = {.f16, .f32};

S

HFMA 1.5pJ 2000%

HDP4A 6.0pJ 500%
HMMA 110pJ 22%
IMMA 160pJ 16%

*Overhead is instruction fetch, decode, and operand fetch - 30pJ
**Energy numbers from 45nm process

Source Bill Dally, Chief Scientist and SVP of Research, NVIDIA Corporation & Adjunct Professor of CS and EE, Stanford

https://www.youtube.com/watch?v=gofl47kfD28

https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf

<ANVIDIA I

https://www.youtube.com/watch?v=gofI47kfD28
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf
https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf

Reduced Precision Floating Point Types

Numerical Concerns in LLMs

- FP8: LLM training and inference for Llama4 most
recently, MOEs, ...

10000
- FP8is either e4m3 or e5m2
- Allows us be even more compact than before just lik
half-floats did at some point
- Introduced on Hopper with 2x more throughput % 1000
= Range Precision =
o = —
» exponent mantissa | 8
e8 = m23 2 @
FP32 BT g A
e5 m10 = 100
FP16 S—{IIID[IIITIIITI g
e8 m7 g
BF16 S| TTIIIT g 20
e5 m2 é
110 5 10 A
e4| m3 <
E—I10 010

+ Is that enough though? How can we avoid losing

too much of the dynamic range? Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)

- Key is scalin
ys scaling . . = FP64 mFPG4 Tensor WFP32 B FP16 Tensor
* But Scalmg can be slow if not done in hardware B BF 16 Tensor m FP8 Tensor INT8 Tensor FP4 Tensor

« What kind of scaling do we need?

<ANVIDIA I

Hardware'accelerated Scaling scaleA C scaleC amaxD scaleD

Hopper architecture GPUs
op(A)

- Hopper GPUs introduced tensor-wide HW scaling

- One problem is that entire matrices A & B are op(B)
normalized with one scaling factor

- You need to either calculate scaleD at every step of scaleB amaxAux scaleAux
training

« Remember it’s a global value so not tile-based

- Or adopt delayed scaling to pay a smaller price in 16
accuracy but 10% faster e2e

- The main issue is lack of flexibility 13

- That why scaling recipes like DeepSeek appeared
- Or channel-wide/outer vector recipes

- Obviously on Hopper there is a perf hit

- Maintaining more control over accuracy is worth it

14

1.3

Step-time Speedup over BF16

1.2

Tensor-wise Channel-wise Block-wise (128x128) “DSv3”
Subchannel-wise

Model Size
https://developer.nvidia.com/blog/new-cublas-12-0O-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/

<ANVIDIA I

https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/
https://developer.nvidia.com/blog/new-cublas-12-0-features-and-matrix-multiplication-performance-on-nvidia-hopper-gpus/

Channel- and block-scaled FP8 matmuls on NVIDIA Hopper

Introduced with cuBLAS in CUDA 12.9

2
1.5
O
L
m
o BF16
8 1 m FP8 subschannel 1D x 1D
o m FP8 subschannel 1D x 2D
S m FP8 outer vector
8 0.75 m FP8 tensor-wide
Q
Qo
0
M=4096 M=4096 M=4096 M=4096 M=4096 M=4096 M=4096 M=4096
N= 1536 N= 1536 N= 1536 N= 16384 N= 2048 N=512 N= 7168 N= 7168
K= 12288 K= 24567 K=6144 K=7168 K=7168 K= 32768 K=2112 K= 4096
Matrix Size

https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/

<ANVIDIA I

https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/
https://developer.nvidia.com/blog/boosting-matrix-multiplication-speed-and-flexibility-with-nvidia-cublas-12-9/

Block-Scaled Floating-Point Types

Vector of 32 elements

A

aka Microscaled Formats

ESM2 [s [E[E[E[E[E[M[M]
MXFP8

E4AM3 [s[EJEJEJE[M][M[M]

3M2 [s[E[EJE[M[M]
MXFP6

E2M3 [S [E[E[M[M[M]
MXFP4 {E2M1 [s [E [E [M]

~

L

Shared 8-bit exponent with bias=127
A

x [E[e[e]E[E[E[EE]

32

96

128

o

32 64 96

Each 32-element block has
a unique scaling factor

128

<A NVIDIA

HW-Accelerated Block-Scaling

Blackwell

Blackwell enables FP8 and FP4 with scaling applied to matrix sub-blocks

Block-scaled FP8 is more accurate than tensor scaling

HW support makes block scaling fast and efficient

No need to transfer the tensor to GPU global memory before computing the scaling factor
No need to use delayed scaling

Matrix multiply C application Epilogue Quantization
w/ dequantization

scaleA C

Data types:
scaleD o A, B: FP4/FP8

Block-

Scaling
Scales

TensorOp

Epilogue

e Aux: BF16

scaleB > Aux

const __nv_fp8_e8mO0 *a_scale = ... /* device pointer */
// set block scaling mode

Compute o C: FP]6/BF]6/FP32
Ceales e D: FP4/FP8 or wider

e Scales : FP8 flavors

32

64

96

128
0 32 64 96 128

Each 32-element block has
a unique scaling factor

APl example?2 checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_MODE, &AScaleMode, sizeof(AScaleMode)));

// set scaling factors

checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_POINTER, &a_scale, sizeof(a_scale)));

1 cuBLAS documentation https://docs.nvidia.com/cuda/cublas/#d-block-scaling-for-fp8-and-fp4-data-types

2 Samples: https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuBLASLt/LtMxfp8Matmul/sample_cublasLt_LtMxfp8Matmul.cu

<ANVIDIA I

https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://docs.nvidia.com/cuda/cublas/
https://github.com/NVIDIA/CUDALibrarySamples/blob/master/cuBLASLt/LtMxfp8Matmul/sample_cublasLt_LtMxfp8Matmul.cu

cuBLAS Matmul Performance on Blackwell

Kernels and Runtime Heuristics in cuBLAS Optimized for B200 and GB200
..but what is this?

5
2
(a)
@)
4 0
|_
— o
S 2 2 2 3
Al (@) e e ©
T 3 0 0 0
CIL.) N~ o 0
S E g 5 m H200
O — N N = B200
2 2 mGB200
©
(b
(b
o
(D] 1
0
BF16 FP8 Block-scaled Block-scaled BF16 FP8 Block-scaled Block-scaled
FP8 FP4 FP8 FP4
Compute-Bound Matrices Random Sized and Shaped Matrices

(32 <M, N,K<10k)

For block-scaled FP8 and FP4, the baseline on Hopper is chosen to be FP8 with tensor scaling SINVIDIA I

How do we implement kernels for fast matrix multiply on GPUs?

Challenges in Library Design & Development

- Problem space is very large: M, N, K, Batch Size, Transposes,

Epilogues, Bias

D = Activation(aAT’BT? + BC + bias)

- We need the maximum performance implementation for

each problem

>

Ntile

B matrix

} Ktile

A matrix

C matrix

Blockm'

n

} Mtile

} Mitile

——
Ktile

Ntile

Blackwell B200 GPU

<ANVIDIA I

How many kernel options are there on a GPU?

Hopper Generation & Newer

A. 100
5. 1,000

C. 10,000
D. 100,000
E. More than a million

Blackwell B200 GPU

<ANVIDIA I

How many kernel options are there on a GPU?

Hopper Generation & Newer

Parameter g #ofoptions g
A-100 Tile Size 32
5. 1,000 Data Stages 32
C. 10,000 Thread Block Cluster 50
D. 100,000 Splitk 16
CTA Swizzle 3

— . |
=. More than a million Possible Combinations 2,457,600

<ANVIDIA I

Runtime Heuristics Using Al in an Al Library

..or how cuBLAS selects the best kernels from all possible kernels at runtime, and fast!

% of Peak Performance

100
100l =77 GpU ROOfliRe]
x kernel family 1 ,,’) 6 =
kernel family 2 ! X %y % e, ~ 80
go, * kerel family 3 [xxf x&"%” e xg:% L §
x kernel family 4 Ry XXX Q
< kernel family 5 * 2 60
60! x kernel family 6 s = §)
< X
= g —— geomean (93%)
40 S 407« kernel family 1
EJ_ « kernel family 2
o x kernel family 3
>
20 = 207 « kernel family 4
v « kernel family 5
I X x kernel family 6
______________ -2 PR et I
900 10! 102 103 104 900 10! 102 103 104
Arithmetic Intensity (FLOP/B) Arithmetic Intensity (FLOP/B)
= cUBLAS ships with lots of kernel families (or implementations) = We train a recommender model to make fast inference at runtime
= Some are more suitable for a specific problem shapes than others = Accuracy is guaranteed on an ensemble of problems (in geomean)

= The library must offer best out-of-the-box perf at launch everywhere = Runtime models can also be analytical
= Autotuning can add extra performance for outliers (example

More in cuBLAS 12.5 blogpost <SANVIDIA I

https://github.com/NVIDIA/CUDALibrarySamples/tree/master/cuBLASLt/LtSgemmSimpleAutoTuning
https://developer.nvidia.com/blog/introducing-grouped-gemm-apis-in-cublas-and-more-performance-updates/

IEEE FP64

IEEE FP32

TF32

IEEEFP16

BF16

FP8 E4M3

FP8 ESM2

Reduced & Mixed Precision

H Sign

Exponent ™ Mantissa

Developments That Made This Possible

Performance in TFLOP/s or TOP/s.

A Virtuous Cycle

Algorithms

&, 2B

Performance of a Single GPU

Hardware Evolution for Mixed-Precision Support S

10000
Lata

Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)
mFP64 mFP64 Tensor ®FP32 mFP16 Tensor
™ BF16 Tensor ™ FP8 Tensor INT8 Tensor FP4 Tensor

Datacenters

1.2GW Stargate, Abilene, TX, USA

Al Model Growth

Training computation (petaFLOP)

10 billion
100 million
.
1 million e &
.
. o
. .
10,000 . .
.
100
° ‘ *
d
o ? o® ® o

1
Mar 17,2015 Apr 26,2017 Sep8,2018 Jan 21,2020 Jun4,2021 Oct 17,2022 Feb 29,2024
Publication date

<ANVIDIA I

Mixed-Precision Computing &
Floating-Point Emulation

Performance in TFLOP/s or TOP/s

Single GPU Matrix Multiplication Performance

Tensor Core Throughput Over GPU Generations Since Introduction

112.5X
10000
1000 &
N
100
10

Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)
u FP64 B FP64 Tensor mFP32 B FP16 Tensor
m BF 16 Tensor ® FP8 Tensor INT8 Tensor FP4 Tensor

<ANVIDIA I

How can we leverage higher performance and energy-efficient hardware?
Two different approaches

- Mixed-precision algorithms (e.g., iterative
refinement solvers, HPL-MxP) result in great
performance and efficiency gains

- Fundamentally different numerics and significant
adoption challenges due to the need to invest in
these algorithmic changes

Data: An n x n matrix A, and size n vector b.
Result: A solution vector x!) approximating x in
Ax =b, and an LU factorization of A =LU.
(FP16) Solve Ax'V) = b using FP16 LU factorization
and triangular solve;
i« 1;
repeat
(FP64) Compute residual r) < Ax) —b;
(Low Precision) Solve Ac = A using
IR: FP16 triangular solve using the LU
factors, casting ¢ to FP64, or
IRGM: FP64 GMRES preconditioned by
M= LU,
(FP64) Update x(i+1) = x(0) —¢;
i—i+1;
until x is accurate enough;

E https://dl.acm.org/doi/10.1109/SC.2018.00050

Emulation of FP64 and FP32 matrix multiplies
without sacrificing accuracy for a performance
gain and without requiring any code changes

- Requires robust implementations and community
acceptance even if code changes are not required

B
e m v Split
I 0 .) - A
,L AY.B :) lB(n eee B
[At())
A”)
\y
Al> . IZD (”»)0
. ®e 0
Split| * * C
| A(.\')

<ANVIDIA I

https://dl.acm.org/doi/10.1109/SC.2018.00050
https://arxiv.org/abs/2306.11975

Full FP64 Precision on FP16 Tensor Cores

LU-factorization algorithm!"! using low-precision
tensor cores to give an IEEE-754 FP64 accurate result

Input 64-bit matrix

© FP16-TC—FP64 GM
FP16-TC—FP64 IR

£ FP16-TC—FP64 IRGM

FP32—FP64

Convert precision
AstforlU —b
factorization AB4 > AT6 5
107>+
LU factorization of A'6 Start by doing the
)) compute-intensive

gives solution xo factorization in FP16 —~ 10-10[

5

Convert xo g
to 64-bit precision g 10—15 [
Compute residual r; = b - Ax; j
in FP64 10720}
10—22 i

1 FPea

% f-a-2% accuracy

Iterative step refines
accuracy of result to 0
desired precision

Solve UL 1Ac; = UL,
by GMRES

repeat until x; is
accurate enough

Correct current solution
— _ —>
Xi+1 =X + C; in FP64

Output is IEEE-754
accurate FP64 result

[1] Haidar Azzam, Bayraktar Harun, Tomov Stanimire, Dongarra Jack and Higham Nicholas J., 2020, Mixed-precision iterative refinement using tensor cores
on GPUs to accelerate solution of linear systems, Proc. R. Soc. A.4762020011020200110 https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

2
iterations

3 4

<ANVIDIA I

https://royalsocietypublishing.org/doi/10.1098/rspa.2020.0110

Eating your cake and having it too: Both Power and Performance

Mixed
FP64 FP16+FP64 Precision
Benefit
Performance
(TFLOP/s) 41.1 160.1 3.9x
Perf/Watt
74 42 4
(GFLOPs/Watts) > =X

Performance and Perf/Watt improvement when using
FP16 tensor cores with iterative refinement method

Power Usage GH200

I

FP64 zgesv

FP16->64 zkgesv

I

Performance
in Tflop/s

Gflops/Watts

2 3 4 5 6 7
Time (sec)

Complex matrix solve via LU decomposition
ZGESV on GH200, n=44000

9

<ANVIDIA I

300

250

200

150

100

50

Mixed-Precision Iterative Refinement Solver

Performance and Efficiency Improvements Across Four GPU Generations

280

157.2

346 426 338

-0 =0 0N =
— ||

Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)
Performance (TFLOP/s)
m FP64 (Native) mFP16+FP64 (MxP)

500

450

400

350

300

250

200

150

100

50

448

359

262
173
45 > 53
. = - H
Volta (V100) Ampere (A100) Hopper (H200) Blackwell (B200)

Efficiency (GFLOP/s/Watt)
W FP64 (Native) mMFP16+FP64 (MxP)

PRELIMINARY DATA | FIGURES SUBJECT TO CHANGE

<ANVIDIA I

1950s

Simulated floating-point
arithmetic utilizing
fixed-point
representations

IBM 701 Speedcoding
System

Historical Perspective on Emulation

The evolution of floating-point (FP) computation

1980 |

FPU Coprocessor
Intel 8087

1989

Integrated FPU

Intel i486

2017+

GPU Tensor Cores
introduced for for reduced
& mixed-precision

FP16, BF16, TF32, FP8,
NVFP4, MXFP8

T1 960s-70s

IBM Hexadecimal FP
Cray FP

Diversity in
representations

T 4
1985

IEEE 754
Standardization of FP

|

2001

GPUs with
programmable shaders

7ZVIDI Ae

grorcey”

CF4585.00 0151A5
S TAIWAN

Ti200

12 24| SR TSN

—

Today

FP emulation returns
(e.g., Ozaki-I & I1)
GPU Tensor Cores
Accelerated Matrix

Multiplication using Al FP
types

Performance and Perf/Watt: Emulated vs. Native HPL

At Max-P (Performance) Blackwell HPL runs 2.0x faster and 1.7x more efficiently using emulation (55 bits)
At Max-Q (Efficiency) Blackwell HPL runs 2.3x faster and 1.6x more efficiently using emulation (55 bits)

90

80
20 68.4

82.1

60
50
40
30
20
10

53.4

TFLOPS GFLOPS/Watt TFLOPS GFLOPS/Watt

Max-P (Performance) Max-Q (Efficiency)
m Native FP64 m Emulation

Double Precision Emulation using Ozaki-I Scheme
https://arxiv.org/abs/2409.13313
https://arxiv.org/abs/2306.11975 <ANVIDIA I

https://arxiv.org/abs/2409.13313
https://arxiv.org/abs/2306.11975

700

600

Ul
o
o

Simulation Time (s)

Quantum Espresso Performance With FP Emulation (Ozaki-I)
AuSurf Benchmark on Blackwell RTX (Low Native FP64)

Native
FP64

56 bits
(s=7)

>

48 bits
(s=6)

>

40 bits
(s=5)

1.0E-09

1.0E-10

1.0E-11

1.0E-12

1.0E-13

Relative Error

=B-Simulation Time (s)

B Total Energy

A One-electron contribution
® Hartree Contribution

No data points for relative error
indicate no difference in results

<ANVIDIA I

Reduced, Mixed-Precision, and Al for
Scientific Computing

Association for

Some Statistics From the Gordon Bell

Finalists Specific Types of Contributions
Looking at Reduced/Mixed-Precision Usage in the Last 10 Years ACM Gordon Bell Prize

Innovations in applying high-performance computing to science, engineering, and large-scale data analytics

Award Recipients Nominations Committee Members

Home > ACM Gordon Bell Prize

Total #of # Finalists w/ Maximum # of # Winners w/
Year Finalists Reduced/MxP Performance Winners Reduced/MxP
2015 5 2 2.0PF 1 0
2016 6 1 ? 1 0
2017 3 2 18.9PF 1 1
2018 6 6 1.3EF 2 2
2019 2 2 90.9PF 1 1
2020 6 5 136PF 1 1
2021 6 3 4.4EF 1 1
2022 6 2 1.0EF 1 0
2023 6 4 0.66EF 1 1
2024 6 4 1.8EF 1 0
Total 52 31 11 7

&0%!

<ANVIDIA I

Gemini & G5 ‘f)

2.5 Pro (preview) v
[} Gordon Bell Prize & Machine Learning Infographic (2015-... & (o) C |(Code | «/ Preview : X

this is about the gordon bell prize
awarded once a year. | am interested

in the last 10 years of papers that...

Machine Learning's Ascent in
o thining High-Performance Computing
A Decade of Gordon Bell Prize Insights (2015-2024)

Machine Learning's Growing
Influence on High-Performance

Computing: A Decade of Gordon 1 3 + 3 e

Bell Prize Finalists and Winners

. Finalists Leveraged ML Winners Utilized ML
Over the past decade (2015-2024), machine

learning techniques have increasingly become
a key component in groundbreaking high-
performance computing (HPC) research, as
evidenced by their growing presence among

Gordon Bell Prize finalists and winners. An

The Growing Prominence
of Machine Learning in HPC

analysis of this prestigious award reveals a

® Enter a prompt for Gemini
The last decade has witnessed a significant integration of machine learning (ML)
+ @ DeepResearch Canvas techniques within high-performance computing (HPC). The Gordon Bell Prize, a

premier award recodgnizing outstanding achievements in HPC, serves as a clear

NVIDIA

AlphaFold

They cracked the code for
proteins’ amazing structures

The Nobel Prize in Chemistry 2024 is about proteins, life’s ingenious
chemical tools. David Baker has succeeded with the almost impossible
feat of building entirely new kinds of proteins. Demis Hassabis and John
Jumper have developed an AI model to solve a 50-year-old problem:
predicting proteins’ complex structures. These discoveries hold enormous
potential.

Related articles

Press release

Popular information: They have revealed proteins’ secrets through
computing and artificial intelligence

Scientific background: Computational protein design and protein
structure prediction

David Baker Demis Hassabis John Jumper

“for computational protein design” “for protein structure prediction” “for protein structure prediction”

Data source: AlphaFold/EMBL-EBI/PDB Q8W3K0/Royal Society of Chemistry

NVIDIA

On the topic of HPC & Al

& Post

o

HPC and Al are totally different. HPC is large, expensive clusters of GPUs
running arcane algorithms from PhDs who belittle Al. But Al is large,
expensive clusters of GPUs running arcane algorithms from PhDs who

belittle HPC.

https://x.com/Daniel_Bowers/status/1643774967115292672

Closing Remarks

What | would like for you to remember from this talk

- There will be an increased demand for library APIs
and algorithms that can deliver energy efficient,
high-throughput linear algebra capabilities for
reduced-precision types

- Mixed-Precision Algorithms
- Floating-Point Emulation

- Batched APIs

i
' gqlw lln{l!l?!k'l,
A1 M A1

i

|

|

il
M

- Application and library developers have an
opportunity to do more with the resources present
on the evolving processor and system architectures

- Tools that aid precision tuning and mixed-precision
algorithm development are needed

- Energy efficient kernel design will become
increasingly important
- Max-Q vs. Max-P

- Scientific computing leverages both Al & HPC
- The role of Al will continue to grow
- Greater focus will be on algorithms that accelerate
GB200 NVL72 both @nvon |

<A NVIDIA

