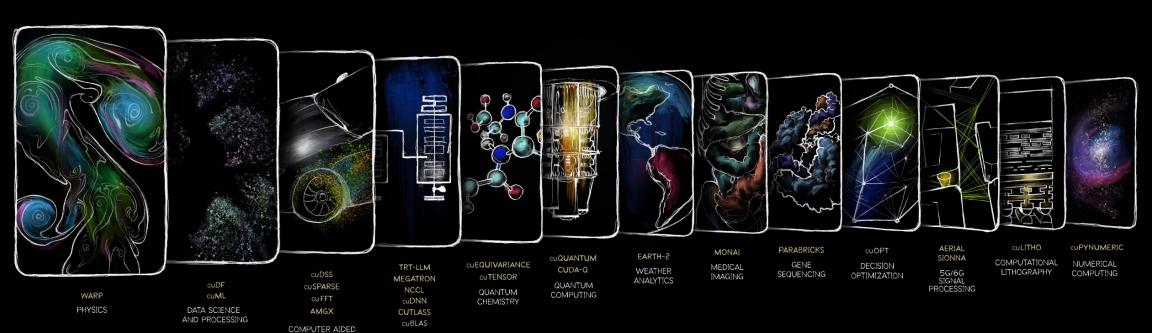


Beyond double precision: Al-driven innovations in HPC offer a quantum leap to scientific computing

Harun Bayraktar, Senior Director - Libraries Engineering

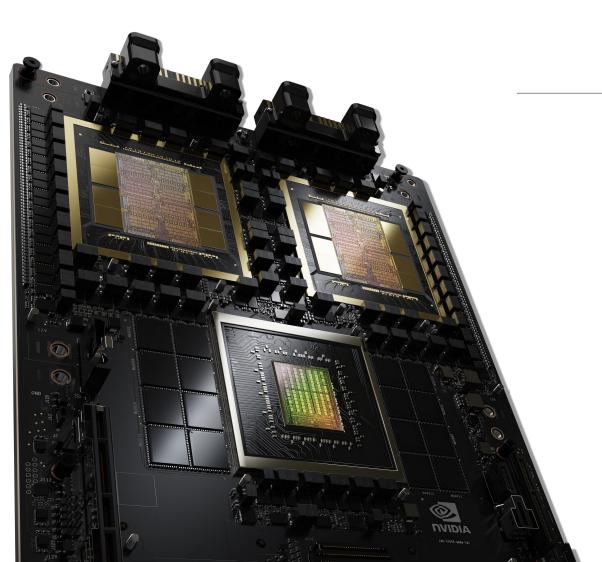
1st International Workshop on Distributed and Parallel Programming for Extreme-scale AI | June 16-17th, 2025 | Paris, France

CUDA-X FOR EVERY INDUSTRY



ENGINEERING

DEEP LEARNING



Overview

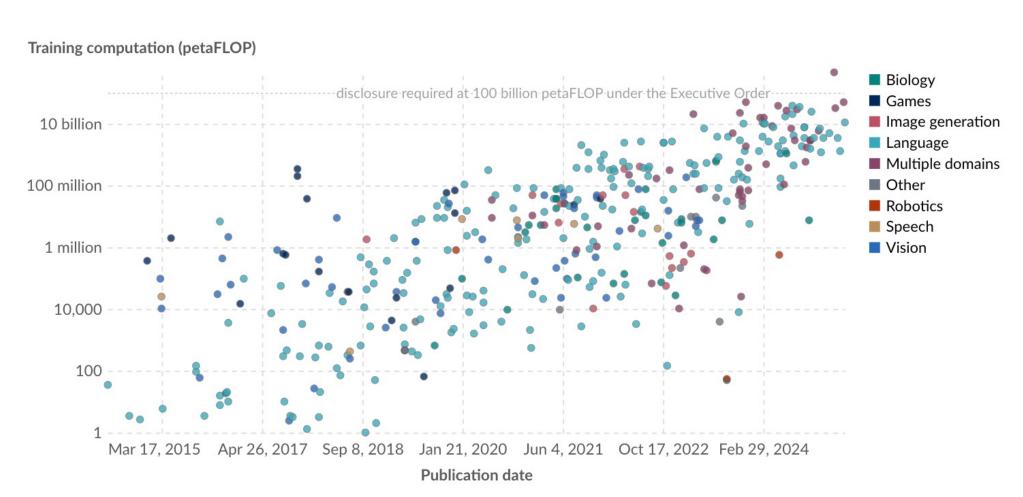
What I would like for you to remember from this talk

- Al has led to significant innovations in mixedprecision (MxP) computing, processor, and system architecture
 - Opportunities and challenges for scientific computing
- We can deliver much higher throughput and efficiency by employing
 - MxP algorithms
 - Floating Point Emulation
- We should not think about AI, HPC, and Scientific Computing as separate things

A Matrix Multiplication Focused Look at Developments that Enabled AI Model Size & Capability Growth

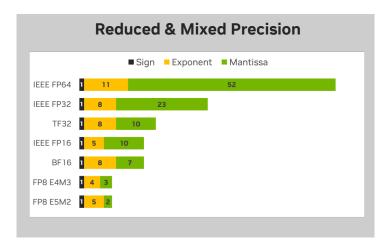
Computation used to train notable AI systems, by domain

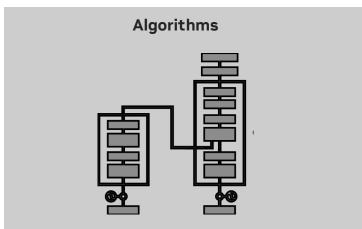
Growth over the last decade

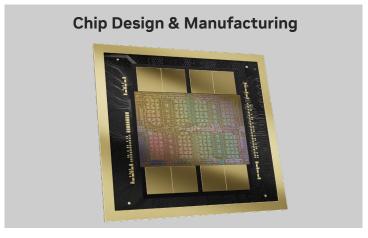


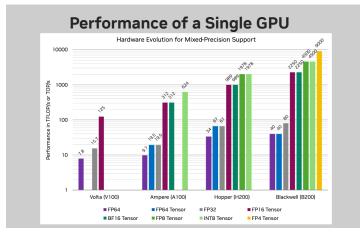
Developments That Made This Possible

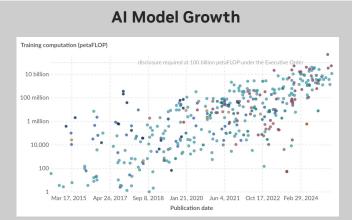
A Virtuous Cycle





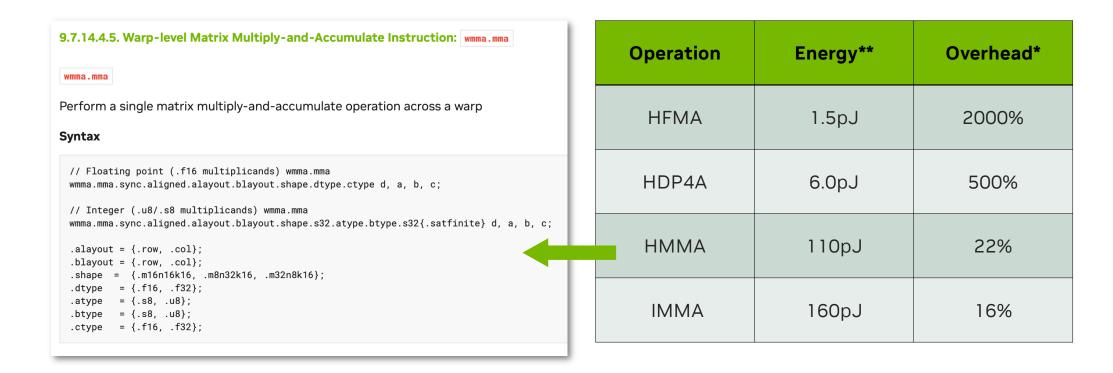






Specialized Instructions Amortize Overhead

The Case for Tensor Cores for Matrix Multiplications



Source Bill Dally, Chief Scientist and SVP of Research, NVIDIA Corporation & Adjunct Professor of CS and EE, Stanford https://www.youtube.com/watch?v=gofl47kfD28

https://cra.org/wp-content/uploads/2024/08/Deep-Learning-Hardware-Session-Slides.pdf

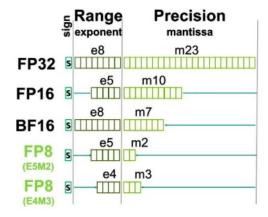
^{*}Overhead is instruction fetch, decode, and operand fetch – 30pJ

^{**}Energy numbers from 45nm process

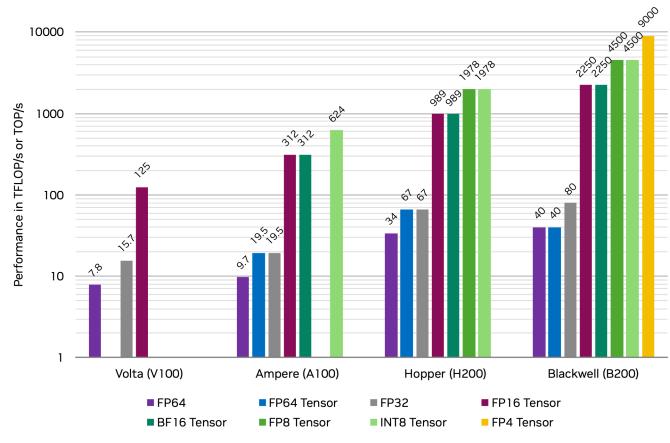
Reduced Precision Floating Point Types

Numerical Concerns in LLMs

- FP8: LLM training and inference for Llama4 most recently, MOEs, ...
 - FP8 is either e4m3 or e5m2
 - Allows us be even more compact than before just lik half-floats did at some point
 - Introduced on Hopper with 2x more throughput



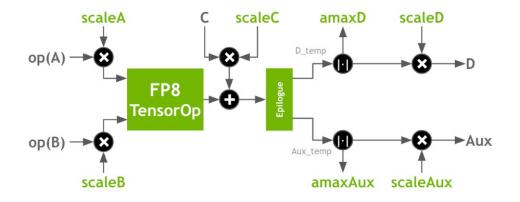
- Is that enough though? How can we avoid losing too much of the dynamic range?
 - Key is scaling
 - But scaling can be slow if not done in hardware
 - What kind of scaling do we need?

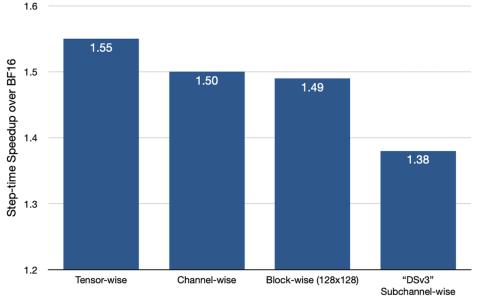


Hardware-accelerated Scaling

Hopper architecture GPUs

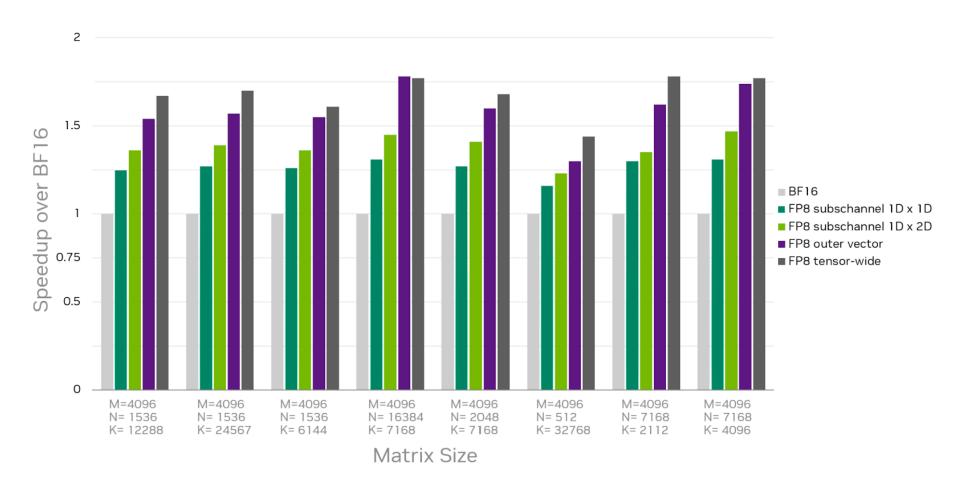
- Hopper GPUs introduced tensor-wide HW scaling
 - One problem is that entire matrices A & B are normalized with one scaling factor
 - You need to either calculate scaleD at every step of training
 - Remember it's a global value so not tile-based
 - Or adopt delayed scaling to pay a smaller price in accuracy but 10% faster e2e
- The main issue is lack of flexibility
 - That why scaling recipes like DeepSeek appeared
 - Or channel-wide/outer vector recipes
 - Obviously on Hopper there is a perf hit
 - Maintaining more control over accuracy is worth it





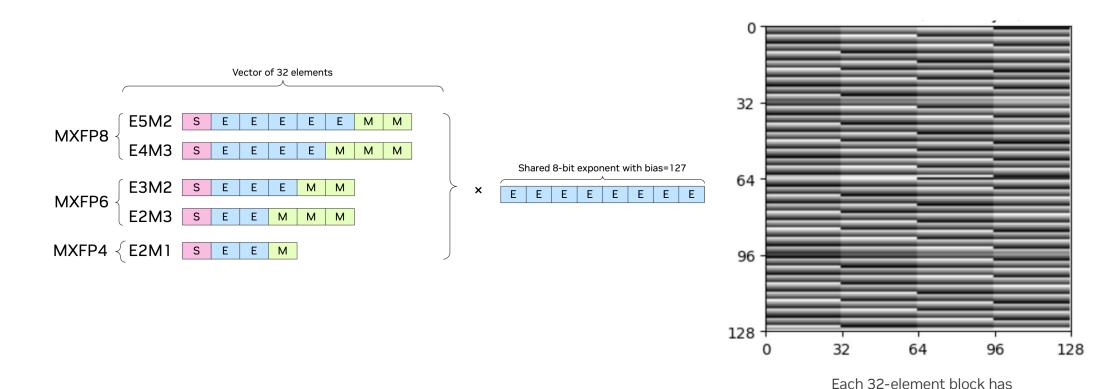
Channel- and block-scaled FP8 matmuls on NVIDIA Hopper

Introduced with cuBLAS in CUDA 12.9



Block-Scaled Floating-Point Types

aka Microscaled Formats

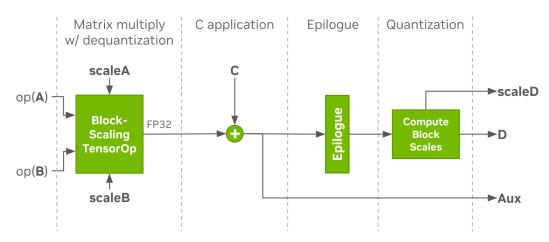


a unique scaling factor

HW-Accelerated Block-Scaling

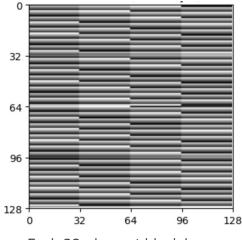
Blackwell

- Blackwell enables FP8 and FP4 with scaling applied to matrix sub-blocks 1
- Block-scaled FP8 is more accurate than tensor scaling
- HW support makes block scaling fast and efficient
- No need to transfer the tensor to GPU global memory before computing the scaling factor
- No need to use delayed scaling



Data types:

- A, B: FP4/FP8
- **C**: FP16/BF16/FP32
- D: FP4/FP8 or wider
- Aux: BF16
- Scales: FP8 flavors



Each 32-element block has a unique scaling factor

const __nv_fp8_e8m0 *a_scale = ... /* device pointer */

// set block scaling mode

API example²

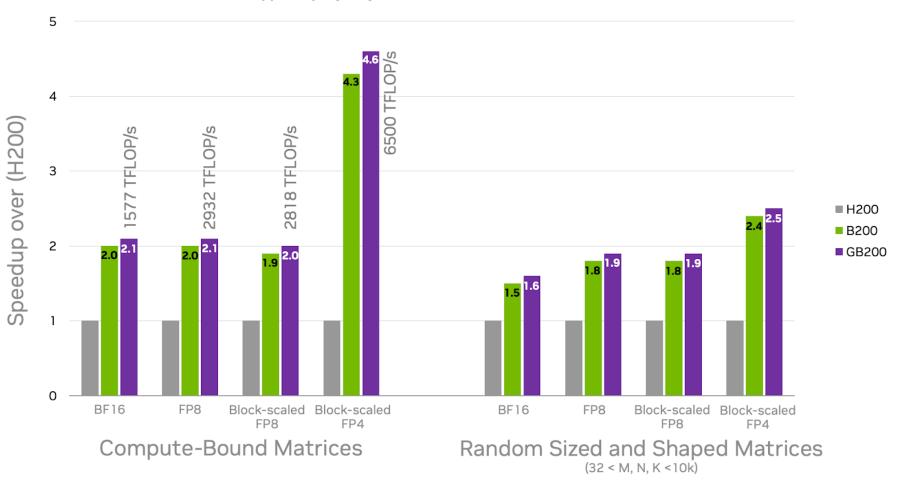
checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_MODE, &AScaleMode, sizeof(AScaleMode))); // set scaling factors

checkCublasStatus(cublasLtMatmulDescSetAttribute(operationDesc, CUBLASLT_MATMUL_DESC_A_SCALE_POINTER, &a_scale, sizeof(a_scale)));

1 cuBLAS documentation https://docs.nvidia.com/cuda/cublas/#d-block-scaling-for-fp8-and-fp4-data-types

cuBLAS Matmul Performance on Blackwell

Kernels and Runtime Heuristics in cuBLAS Optimized for B200 and GB200 ...but what is this?



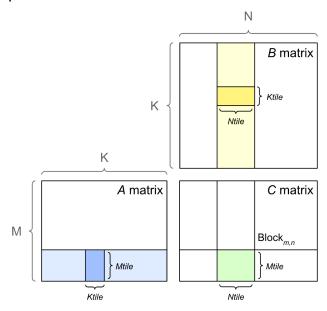
How do we implement kernels for fast matrix multiply on GPUs?

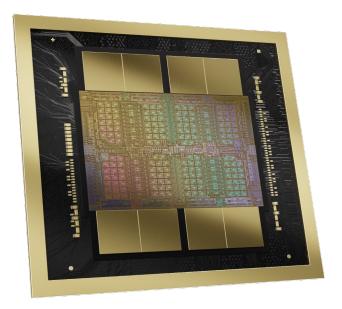
Challenges in Library Design & Development

 Problem space is very large: M, N, K, Batch Size, Transposes, Epilogues, Bias

$$D = Activation(\alpha A^{T?}B^{T?} + \beta C + bias)$$

We need the maximum performance implementation for each problem



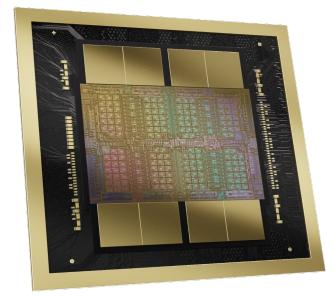


Blackwell B200 GPU

How many kernel options are there on a GPU?

Hopper Generation & Newer

- A. 100
- B. 1,000
- C. 10,000
- D. 100,000
- E. More than a million



Blackwell B200 GPU

How many kernel options are there on a GPU?

Hopper Generation & Newer

A. 100

B. 1,000

C. 10,000

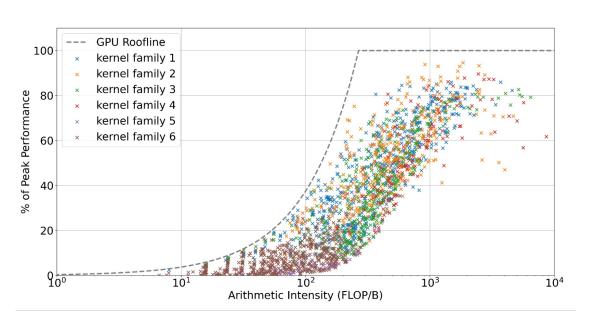
D. 100,000

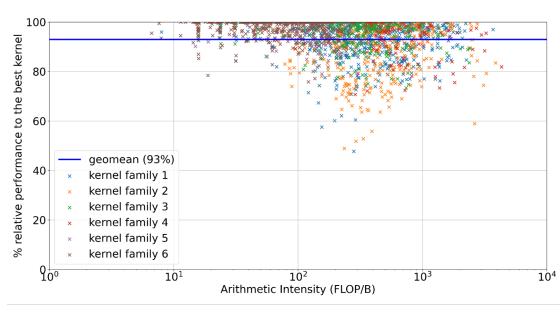
E. More than a million

Parameter -	# of options
Tile Size	32
Data Stages	32
Thread Block Cluster	50
Split-k	16
CTA Swizzle	3
Possible Combinations	2,457,600

Runtime Heuristics Using AI in an AI Library

...or how cuBLAS selects the best kernels from all possible kernels at runtime, and fast!

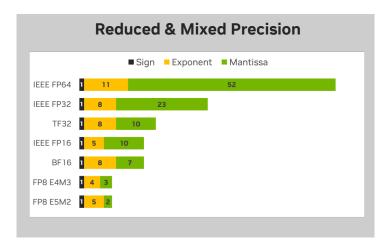


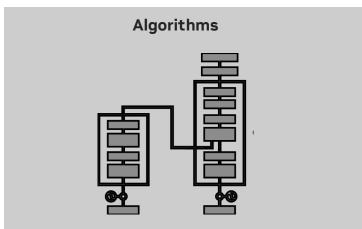


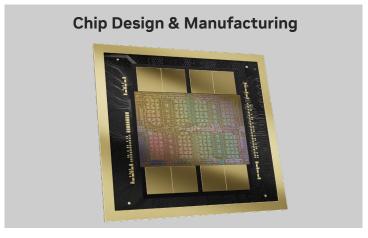
- cuBLAS ships with lots of kernel families (or implementations)
- Some are more suitable for a specific problem shapes than others
- The library must offer best out-of-the-box perf at launch everywhere
- We <u>train a recommender model</u> to make fast inference at runtime
- Accuracy is guaranteed on an ensemble of problems (in geomean)
- Runtime models can also be analytical
- Autotuning can add extra performance for outliers (example)

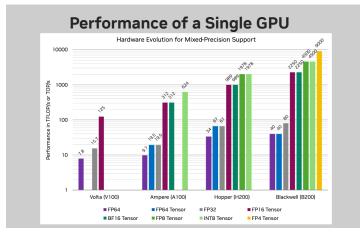
Developments That Made This Possible

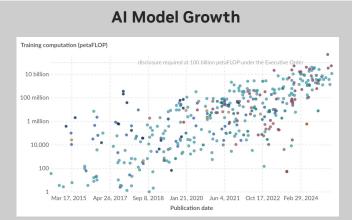
A Virtuous Cycle







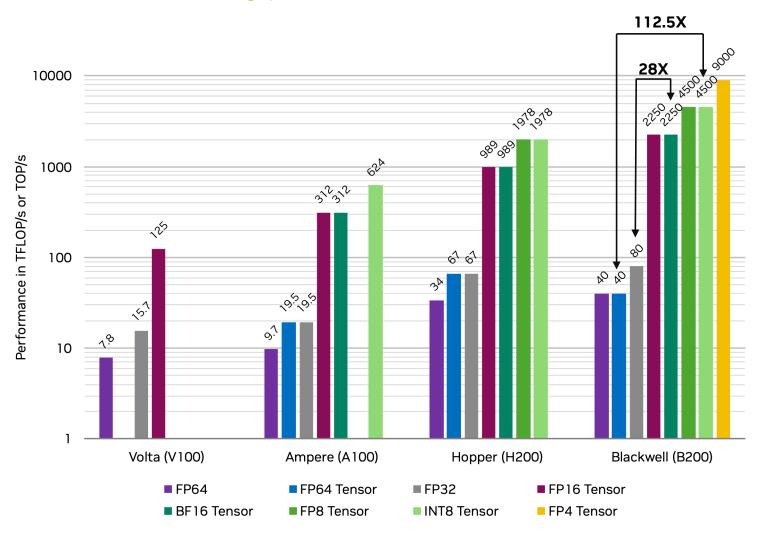




Mixed-Precision Computing & Floating-Point Emulation

Single GPU Matrix Multiplication Performance

Tensor Core Throughput Over GPU Generations Since Introduction



How can we leverage higher performance and energy-efficient hardware?

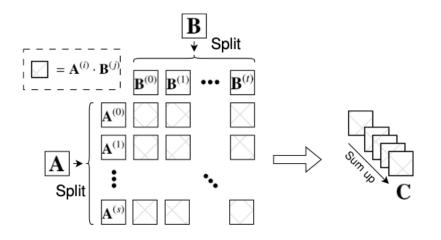
Two different approaches

- Mixed-precision algorithms (e.g., iterative refinement solvers, HPL-MxP) result in great performance and efficiency gains
 - Fundamentally different numerics and significant adoption challenges due to the need to invest in these algorithmic changes

```
Data: An n \times n matrix A, and size n vector b.
Result: A solution vector x^{(i)} approximating x in
        Ax = b, and an LU factorization of A = LU.
(FP16) Solve Ax^{(1)} = b using FP16 LU factorization
 and triangular solve;
i \leftarrow 1;
repeat
   (FP64) Compute residual r^{(i)} \leftarrow Ax^{(i)} - b;
    (Low Precision) Solve Ac = r^{(i)} using
        IR: FP16 triangular solve using the LU
         factors, casting c to FP64, or
        IRGM: FP64 GMRES preconditioned by
         M = LU;
    (FP64) Update x^{(i+1)} = x^{(i)} - c;
   i \leftarrow i + 1;
until x^{(i)} is accurate enough:
```


https://dl.acm.org/doi/10.1109/SC.2018.00050

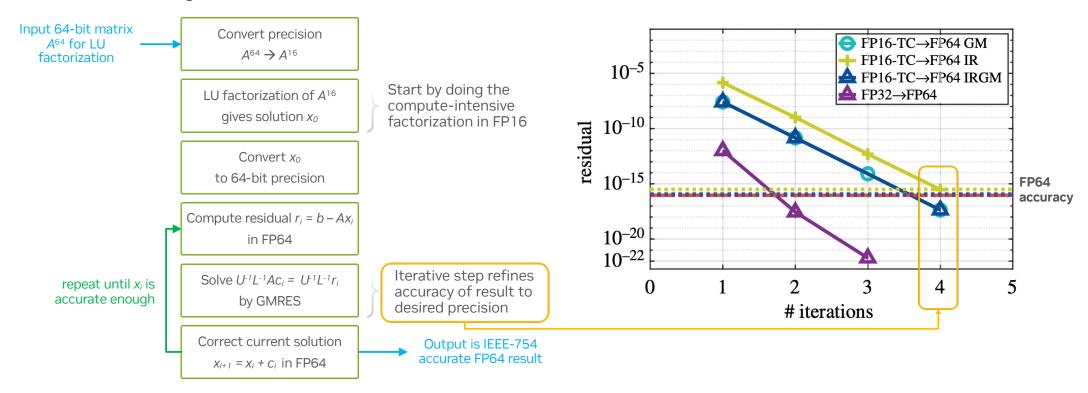
- Emulation of FP64 and FP32 matrix multiplies without sacrificing accuracy for a performance gain and without requiring any code changes
 - Requires robust implementations and community acceptance even if code changes are not required



https://arxiv.org/abs/2306.11975

Full FP64 Precision on FP16 Tensor Cores

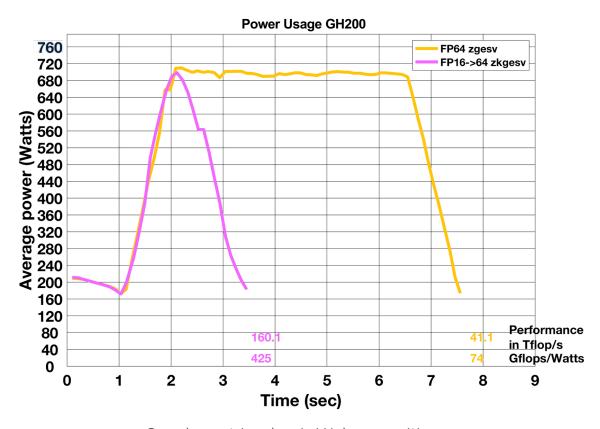
LU-factorization algorithm^[1] using low-precision tensor cores to give an IEEE-754 FP64 accurate result



Eating your cake and having it too: Both Power and Performance

	FP64	FP16+FP64	Mixed Precision Benefit
Performance (TFLOP/s)	41.1	160.1	3.9x
Perf/Watt (GFLOPs/Watts)	74	425	5.7x

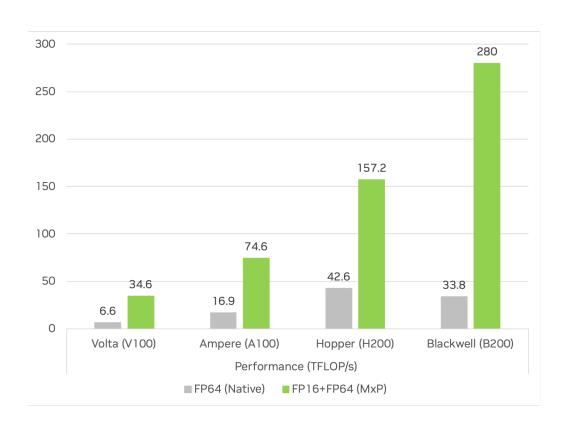
Performance and Perf/Watt improvement when using FP16 tensor cores with iterative refinement method

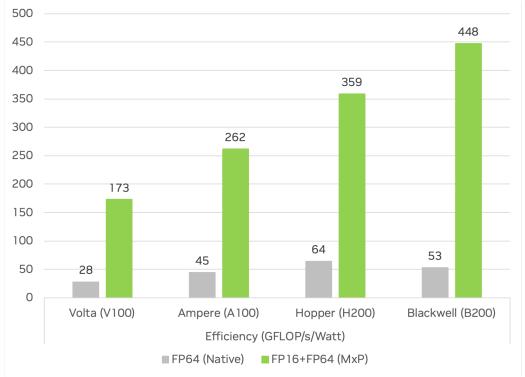


Complex matrix solve via LU decomposition ZGESV on GH200, n=44000

Mixed-Precision Iterative Refinement Solver

Performance and Efficiency Improvements Across Four GPU Generations





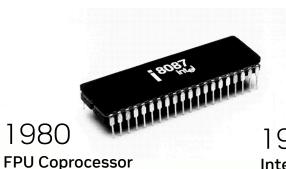
Historical Perspective on Emulation

The evolution of floating-point (FP) computation

1950s

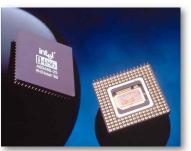
Simulated floating-point arithmetic utilizing fixed-point representations

IBM 701 Speedcoding System



1989

Integrated FPU Intel i486



2017+

GPU Tensor Cores introduced for for reduced & mixed-precision

types

FP16, BF16, TF32, FP8, NVFP4, MXFP8

1960s-70s
IBM Hexadecimal FP
Cray FP
Diversity in
representations

Intel 8087

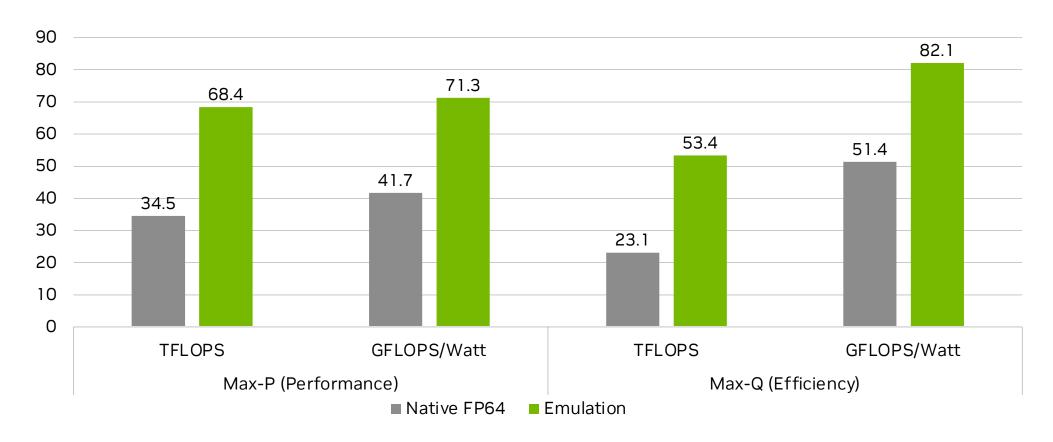
1985
IEEE 754
Standardization of FP

2001 GPUs with programmable shaders

FP emulation returns (e.g., Ozaki-I & II) GPU Tensor Cores Accelerated Matrix Multiplication using AI FP

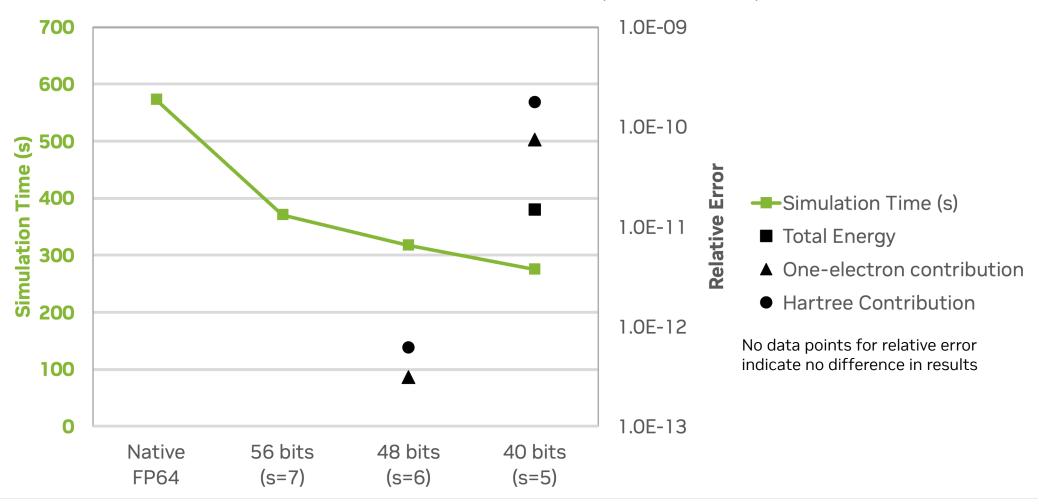
Performance and Perf/Watt: Emulated vs. Native HPL

At Max-P (Performance) Blackwell HPL runs 2.0x faster and 1.7x more efficiently using emulation (55 bits) At Max-Q (Efficiency) Blackwell HPL runs 2.3x faster and 1.6x more efficiently using emulation (55 bits)



Quantum Espresso Performance With FP Emulation (Ozaki-I)

AuSurf Benchmark on Blackwell RTX (Low Native FP64)

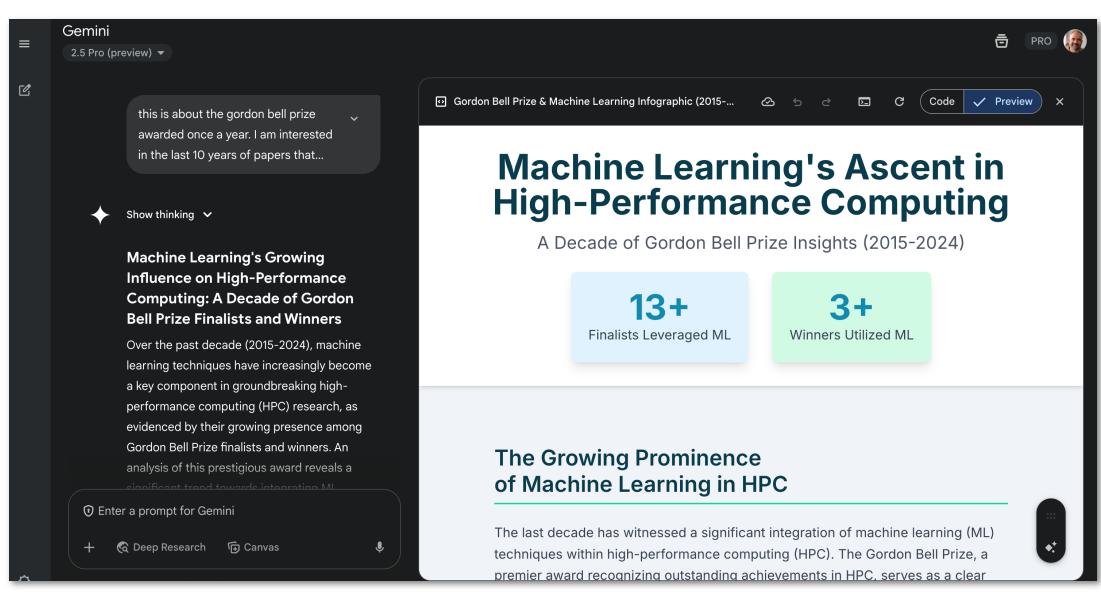


Reduced, Mixed-Precision, and Al for Scientific Computing

Some Statistics From the Gordon Bell Finalists

Looking at Reduced/Mixed-Precision Usage in the Last 10 Years

Year	Total # of Finalists	# Finalists w/ Reduced/MxP	Maximum Performance	# of Winners	# Winners w/ Reduced/MxP
2015	5	2	2.0PF	1	0
2016	6	1	?	1	0
2017	3	2	18.9PF	1	1
2018	6	6	1.3EF	2	2
2019	2	2	90.9PF	1	1
2020	6	5	136PF	1	1
2021	6	3	4.4EF	1	1
2022	6	2	1.0EF	1	0
2023	6	4	0.66EF	1	1
2024	6	4	1.8EF	1	0
Total	52	31		11	7



AlphaFold

The Nobel Prize in Chemistry 2024

They cracked the code for proteins' amazing structures

The Nobel Prize in Chemistry 2024 is about proteins, life's ingenious chemical tools. David Baker has succeeded with the almost impossible feat of building entirely new kinds of proteins. Demis Hassabis and John Jumper have developed an AI model to solve a 50-year-old problem: predicting proteins' complex structures. These discoveries hold enormous potential.

Related articles

Press release

Popular information: They have revealed proteins' secrets through computing and artificial intelligence

Scientific background: Computational protein design and protein structure prediction

© Johan Jarnestad/The Royal Swedish Academy of Sciences

David Baker

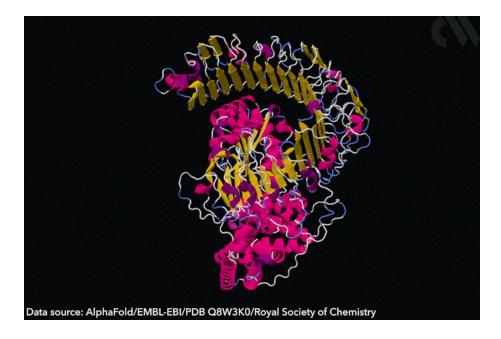
"for computational protein design"

Demis Hassabis

"for protein structure prediction"

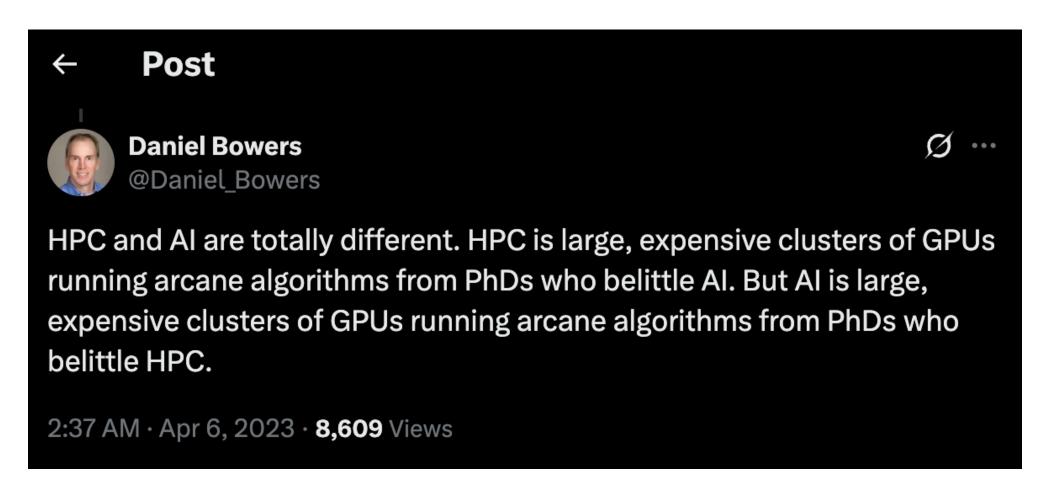
John Jumper

"for protein structure prediction"



On the topic of HPC & Al

Convergence or divergence?



GB200 NVL72

Closing Remarks

What I would like for you to remember from this talk

- There will be an increased demand for library APIs and algorithms that can deliver energy efficient, high-throughput linear algebra capabilities for reduced-precision types
 - · Mixed-Precision Algorithms
 - Floating-Point Emulation
 - Batched APIs
- Application and library developers have an opportunity to do more with the resources present on the evolving processor and system architectures
 - Tools that aid precision tuning and mixed-precision algorithm development are needed
- Energy efficient kernel design will become increasingly important
 - · Max-Q vs. Max-P
- Scientific computing leverages both AI & HPC
 - The role of AI will continue to grow
 - Greater focus will be on algorithms that accelerate both

